Computational Genomics (in space) Concepts and applications in Translational Research

Christoforos Nikolaou

Computational Genomics Group, BSRC "Alexander Fleming"

4th Immunology Workshop for clinicians - Heraklion, June 2023

Translational –omics

Genomics

Gene Associations, Annotation of Variants of Unknown Significance, Polygenic Risk scores, Pharmacogenomics

Epigenomics

Cancer Methylation patterns, Epi-drugs that modulate DNA and histone modifications

Transcriptomics

Molecular Signatures, Biomarker discovery, new targets

Genome Structure in 1D and 3D

Novel mechanisms for mis-expression, Discovery of by-stander genes, Regulatory cascades that provide new leads for disease.

Translational –omics

Genomics

Gene Associations, Annotation of Variants of Unknown Significance, Polygenic Risk scores, Pharmacogenomics

Epigenomics

Cancer Methylation patterns, Epi-drugs that modulate DNA and histone modifications

Transcriptomics

Molecular Signatures, Biomarker discovery, new targets

Genome Structure in 1D and 3D

Novel mechanisms for mis-expression, Discovery of by-stander genes, Regulatory cascades that provide new leads for disease.

Why bother with genome architecture?

Mapping a property...

...sometimes reveals strange patterns

which, in turn, may provide new insights

Why genome structure in 1D matters

The Question(s)

Can we segment the linear genome in "territories" where pervasive activity is crystalized into function?

How may these functional/structural territories be associated with other biological functions.

Spatial genomics properties in one dimension

Gene expression, differential expression and coexpression

Epigenetic/epigenomic markers Chromatin Accessibility

Gene transcription is spatially dependent

Ripples from neighbouring transcription

Miki Ebisuya¹, Takuya Yamamoto¹, May Nakajima¹ and Eisuke Nishida^{1,2}

ARTICLE

DOI: 10.1038/s41467-017-02798-1

Transcriptional decomposition reveals active chromatin architectures and cell specific regulatory interactions

Sarah Rennie¹, Maria Dalby¹, Lucas van Duin¹ & Robin Andersson¹

OPEN

Andersson lab, Nat Comm 2018

RESEARCH

SYNTHETIC GENOMICS

Transcriptional neighborhoods regulate transcript isoform lengths and expression levels

Aaron N. Brooks¹†‡, Amanda L. Hughes¹†, Sandra Clauder-Münster¹, Leslie A. Mitchell²§, Jef D. Boeke^{2,3}, Lars M. Steinmetz^{1,4,5}*

Steinmetz lab, Science 2022

Nishida lab, Nat Cell Biol 2008

Spatial Organization of Gene Expression in disease

Over- and under-expression takes place in localized areas of the linear genome in Down Syndrome.

Spatial Organization of Gene co-Expression in disease

Domains of co-ordinated expression from multi-RNAseq profiles.

Areas of the genome with increased co-expression

Nikolaou, Bertsias and Boumpas labs, Scientific Reports 2020

Spatial Organization of Gene co-Expression in disease

Domains of coordinated expression are **more dispersed**, shorter and more fragmented in a group of ~150 SLE patients, compared to a group of 50 healthy individuals.

Nikolaou, Bertsias and Boumpas labs, Scientific Reports 2020

Regions of differential chromatin accessibility

Mutation rates in cancer are enriched in particular areas of decreased chromatin accessibility.

Mutations can be matched with tissue of origin based on accessibility patterns

Stamatoyannopoulos and Sunyaev labs, Nature 2015

Long Range Epigenetic Silencing

Epigenetic silencing in cancer occurs in extensive regions.

Domains of the genome where under-expression is consistently reversed by methlyltransferase inhibition (azacitidine).

Clark lab, Nature Cell Biology 2010

Spatial genomics properties in three dimensions

Gene activation in 3D

Gene activation in three-dimensional transcriptional condensates

Spatial transcriptomics and 3D cell environments

"In Zoe the lack of Signs does not allow you to the understand the function of each building: **You are lost in an indivisible environment**." Italo Calvino, Invisible Cities

Left: A 2D live cell DNA dSTORM image, adapted from Benke A, Manley S. ChemBioChem. 2012 Right: Artistic representation of Calvino's city of Zoe by Karina Puente Frantzen

Utopian Architecture

("ου τόπος" = no place)

The lack of landmarks is a characteristic of "ultradesigned" architectural structures, in which the **sense of space is by definition arbitrary**. ("ou $\tau \delta \pi o \varsigma$ " = no place)

La ville radieuse (Le Corbusier, 1930)

Aerial view of Paris (2017)

The Question(s)

Can we identify architectural **landmarks** in the 3D nucleus of eukaryotes?

And if so, what can we learn from their positions and their dynamics?

Why Genome Structure in 3D matters

Genomic elements function in proximity to each other.

Proximity is linked to the 3D genome structure.

The 3D genome is robust but flexible and can be (dys)regulated.

Lazaris, Aifantis and Tsirigos, Trends in Cancer 2020

Transcriptional perturbations in 1D and 3D reorganization in inflammation

Influenza A infection **affects transcriptional termination**.

Readthrough transcription leads to 3D genome reorganization in changing compartments and affecting local and distal DNA contacts.

Transcriptional perturbations in 1D and 3D reorganization in inflammation

Readthrough transcription **displaces cohesin** and leads to the abolition of loop contacts.

Repressed genes maintain both cohesin and CTCF binding patterns and further strengthen the existing structure.

Transcriptional perturbations in 1D and 3D reorganization in inflammation

Brenner lab, Cell 2018

3D reorganization in the differentiation of the immune system

Innate lymphocytes (ILCs) can be grouped in three types, each with distinct genome organization.

E.g. only in one of the three groups does the genome structure allow the *Eomes* gene to contact conserved, cognate regulatory elements.

3D reorganization in the differentiation of the immune system

Alternative promoterenhancer contacts among gene groups is generalized.

Some key genes as **Id2** are prominent in all three types.

Henao-Mejia lab, Nature Immunology 2023

Structural heterogeneity in the genomes of cancer patients

Structural variants in the genomes of gliobastoma patients leads to the creation of new 3D contacts (neoloops). Neoloops are associated with **increased** expression of nearby key genes in tumours.

Papantonis and Pallini labs, BioRxiv 2023

Genome Structure in Development & Disease

Condensates, Factories, Phase-separations and other curious entities

Transcription factories

David R.F. Carter*, Christopher Eskiw† and Peter R. Cook‡¹

Cranfield Health, Cranfield University, Cranfield, Bedfordshire MK43 OAL, U.K., +Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K. and the Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K.

Leading Edge Perspective

A Phase Separation Model for Transcriptional Control

Denes Hnisz,^{1,10} Krishna Shrinivas,^{2,7,8,10} Richard A. Young,^{1,3,*} Arup K. Chakraborty,^{2,4,5,6,7,8,*} and Phillip A. Sharp^{3,9} **Typical enhancer**

Molecular Cell

Cell

Enhancer Features that Drive Formation of **Transcriptional Condensates**

Correspondence sharppa@mit.edu (P.A.S.), young@wi.mit.edu (R.A.Y.), arupc@mit.edu (A.K.C.)

Shrinivas et al. demonstrate that specific types of motif compositions encoded in DNA drive localized formation of transcriptional condensates. These findings explain how phase separation can occur at specific genomic locations and shed light on why only some genomic loci become highly active enhancers.

Article

Article

Molecular Cell

Transcription activation is enhanced by multivalent interactions independent of phase separation

Genome Structure in Development & Disease Our system of study: B-cell to macrophage transdifferentiation

Type of experiment	Od	1d	7d
ATAC-seq	\checkmark	\checkmark	~
C/EBPa ChIP-seq	√	√	\checkmark
H3K27ac ChIP-seq	√	√	\checkmark
H3K4me3 ChIP-seq	\checkmark	√	\checkmark
Hi-C	\checkmark	\checkmark	\checkmark

Nikolaou and Graf labs, Bioinformatics 2023

Genome Structure in 3D and Transcriptional Activation SEGCOND: the first method to predict transcriptional condensates

SEGCOND identifies a transcriptionally ultra-active subset of genomic elements

Identification of 3D regions of extreme transcriptional activity during a process, disease or perturbation

Nikolaou and Graf labs, Bioinformatics 2023

Genome Structure in 3D and Transcriptional Activation

Experimental validation of a transcriptional condensate: Ikzf1

PTC example : *lkzf1* locus on Chromosome 7

Nikolaou and Graf labs, (unpublished)

Visible Genomic Landscapes in 3D (that matter)

Activity is pervasive but functionality is localized.

Activity is pervasive but functionality is localized.

Where things happen is sometimes as important as what is happening (or perhaps even more).

Summary

Activity is pervasive but functionality is localized.

Where things happen is sometimes as important as what is happening (or perhaps even more).

1D juxtaposition of genomic elements imposes constraints on possible 3D conformations

Summary

Activity is pervasive but functionality is localized.

- Where things happen is sometimes as important as what is happening (or perhaps even more).
- 1D juxtaposition of genomic elements imposes constraints on possible 3D conformations
- **Genome architecture** has evolved in order to allow for a combination of **flexibility and robustness**

Summary

Activity is pervasive but functionality is localized.

- **Where** things happen is sometimes as important as **what** is happening (or perhaps even more).
- 1D juxtaposition of genomic elements imposes constraints on possible 3D conformations
- **Genome architecture** has evolved in order to allow for a combination of **flexibility and robustness**
- What happens in both 1D and 3D space can be used to explain mechanistic aspects of every possible genomic/nuclear process

Computational Genomics Group

Welcome to the Computational Genomics Group at the Biomedical Sciences Research Center "Alexander Fleming".

Our group was established at the Biology Department of the University of Crete in 2010 and moved to Fleming in 2020. Our interests fall in the (quite) general category of Computational Genomics, Genome Architecture and Sequence Analysis.

www.computational-genomics.weebly.com

People

Athanasia Stavropoulou

Nikos Vakirlis

Sofia Papanikolaou **Klio Maria Verrou**

Emilios Tassios

Vasilis Ntasis

🖬 f 🖌

Computational Genomics

BLOG GROUP MEMBERS NEWS

Group

FICTION DATA ANALYSIS WITH R BOOK

CG² Computational Genomics Group

www.computational-genomics.weebly.com @guilderstern