

Current Immunological trends in clinical topics Thrombosis & fibrosis in inflammation

Panagiotis Skendros, MD, PhD First Department of Internal Medicine & Laboratory of Molecular Hematology University Hospital of Alexandroupolis

Inflammation is linked with thrombosis and fibrosis in common human diseases

- Infectious inflammation (sepsis/SIRS) and thrombosis (DIC)
- Chronic inflammatory and autoimmune diseases are associated with high cumulative risk for atherosclerosis and thrombotic complications
- Metabolic syndrome and subclinical, low grade systemic inflammation
- Inflammatory process is considered to be one of the main steps leading to fibrosis in several autoinflammatory/autoimmune diseases (endresult of a chronic inflammatory process)

Disease

immunothrombosis and/or immunofibrosis

Different types of immune and non-immune cells

Modified from: Behzadi P, et al. J Immunol Res. 2021

The Journal of Immunology, 2006, 177: 4794-4802.

A Novel C5a Receptor-Tissue Factor Cross-Talk in Neutrophils Links Innate Immunity to Coagulation Pathways¹

Konstantinos Ritis,²* Michael Doumas,* Dimitrios Mastellos,[†] Anastasia Micheli,* Stavros Giaglis,* Paola Magotti,[‡] Stavros Rafail,* Georgios Kartalis,* Paschalis Sideras,[†] and John D. Lambris²[‡]

Mitroulis I, Kambas K, Anyfanti P, Doumas M, Ritis K. Expert Opin Ther Targets. 2011

Receptor	Amino acids	Tethered ligands	Classical proteases	
PAR1	425	h: SFFLR m: SFLLR	Thrombin [13];	
			MMPs [14];	
			Granzyme B [15];	
			Cathepsin G [16];	
			Neutrophil elastase (NE) [17];	
			Factor Xa [18];	
			Granzyme K [19];	
			Proteinase-3 [17];	
			Activated protein C (APC) [20]	
PAR2	395	h: SLIGKV	Mast cell tryptase [23];	
		m: SLIGRL	Thrombin [11];	
			Trypsin [24];	
			Matriptase [25];	
			Factor Xa [26]	
PAR3	483	h: TFRGAP	Thrombin [30];	
		m: SFNGGP	Activated protein C [31];	
			Factor Xa [32]	
PAR4	385	h: GYPGQV	Thrombin [13];	
		m: GYPGKF	Trypsin [34];	
		r: GFPGKP	Cathepsin G [35]	

Table 1. The characteristics of different PAR members [12].

Zhuo X, et al. FEBS J. 2022

Immunity

The Coagulation and Immune Systems Are Directly Linked through the Activation of Interleukin-1 α by Thrombin

Graphical Abstract

Authors

Laura C. Burzynski, Melanie Humphry, Katerina Pyrillou, ..., Paul B. Martin, Martin R. Bennett, Murray C.H. Clarke

Correspondence

mchc2@cam.ac.uk

In Brief

Burzynski et al. reveal that the coagulation protease thrombin directly cleaves pro-interleukin (IL)-1 α , rapidly activating the downstream inflammatory cascade. This cleavage site in IL-1 α is conserved throughout mammals, suggesting that this link between coagulation and inflammation may be relevant in multiple disease settings.

Burzynski et al., 2019, Immunity 50, 1033-1042

Thrombin proteolytically cleaves and activates C5 and C3 Ex-vivo/In-vitro experimental and human studies

Generation of C5a in the absence of C3: a new complement activation pathway

Markus Huber-Lang^{1,6}, J Vidya Sarma^{2,6}, Firas S Zetoune^{2,6}, Daniel Rittirsch², Thomas A Neff², Stephanie R McGuire², John D Lambris³, Roscoe L Warner², Michael A Flierl², Laszlo M Hoesel², Florian Gebhard¹, John G Younger⁴, Scott M Drouin⁵, Rick A Wetsel⁵ & Peter A Ward²

JUNE 2006 NATURE MEDICINE

Molecular Intercommunication between the Complement and Coagulation Systems

Umme Amara, Michael A. Flierl, Daniel Rittirsch, Andreas Klos, Hui Chen, Barbara Acker, Uwe B. Brückner, Bo Nilsson, Florian Gebhard, John D. Lambris and Markus Huber-Lang

J Immunol 2010; 185:5628-5636;

Immunothrombosis: a conserved mechanism of host defence

Bonaventura A et al Nat Rev Immunol 2021

Barnado A et al. J. Leukoc. Biol. 2016

Laboratory of Molecular Hematology, DUTH, Alexandroupolis, Greece

Neutrophil/NETs: key player in inflammation

Neutrophils in systemic inflammation

Carnevale S, et al Front. Immunol. 2023

Functional plasticity of immune cells

- the ability of cells to acquire a new function and adopt an alternative fate when exposed to different environmental conditions
- heterogeneous subsets of immune cells have been described during homeostatic/steady-state and inflammatory conditions
- mRNA as a molecular readout: bulk/single cell transcriptomics
- proteins as molecular readout: proteomics
- functional validation: in-vitro, ex-vivo assays
- In-vivo "validation": genetic mutations of key immune pathways and monoclonal antibodies that target cytokines (monogenic autoinflammatory diseases as an excellent example)

Garratt LW. Cells 2021

Transition from organ-based to molecular-based classification

Schett G et al. N Engl J Med 2021

Excess NET formation can drive a variety of severe pathologies

Skendros P et al. CYTONET Project

Mechanisms of neutrophil extracellular trap (NET) thrombogenicity

Stakos & Skendros. Thromb Haemost. 2020

Key interactions between platelets and neutrophils or macrophages

Martinod K, Deppermann C. Platelets. 2021

Clark SR, et al. Nat Med. 2007- Chrysanthopoulou A, et al. J Pathol 2017 - Sreeramkumar, V. et al. Science 2014

Neutrophils/NETs are key factors linking inflammation to immunothrombosis & immunofibrosis in various clinical models

Autophagy Mediates the Delivery of Thrombogenic Tissue Factor to Neutrophil Extracellular Traps in Human Sepsis PLoS One. 2012;7(9):e45427

Konstantinos Kambas^{1®}, Ioannis Mitroulis^{1®}, Eirini Apostolidou¹, Andreas Girod², Akrivi Chrysanthopoulou¹, Ioannis Pneumatikos³, Panagiotis Skendros¹, Ioannis Kourtzelis⁴, Maria Koffa⁵, Ioannis Kotsianidis⁶, Konstantinos Ritis¹*

Ann Rheum Dis 2014

EXTENDED REPORT

Tissue factor expression in neutrophil extracellular traps and neutrophil derived microparticles in antineutrophil cytoplasmic antibody associated vasculitis may promote thromboinflammation and the thrombophilic state associated with the disease

Konstantinos Kambas,¹ Akrivi Chrysanthopoulou,¹ Dimitrios Vassilopoulos,² Eirini Apostolidou,¹ Panagiotis Skendros,³ Andreas Girod,⁴ Stella Arelaki,¹ Marios Froudarakis,⁵ Lydia Nakopoulou,⁶ Alexandra Giatromanolaki,⁷ Prodromos Sidiropoulos,⁸ Maria Koffa,⁹ Dimitrios T Boumpas,^{10,11} Konstantinos Ritis,^{1,3} Ioannis Mitroulis^{1,3,12}

TRANSLATIONAL SCIENCE

REDD1/autophagy pathway promotes Ann Rheum Dis 2019 thromboinflammation and fibrosis in human systemic lupus erythematosus (SLE) through NETs decorated with tissue factor (TF) and interleukin-17A (IL-17A)

Eleni Frangou, ^{1,2,3} Akrivi Chrysanthopoulou, ⁴ Alexandros Mitsios, ⁴ Konstantinos Kambas, ⁴ Stella Arelaki, ⁵ Iliana Angelidou, ⁴ Athanasios Arampatzioglou, ⁴ Hariklia Gakiopoulou, ⁶ George K Bertsias, ⁷ Panayotis Verginis, ¹ Konstantinos Ritis, ^{4,8} Dimitrios T Boumpas^{1,2,9,10}

European Heart Journal doi:10.1093/eurheartj/ehv007 **BASIC SCIENCE**

Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of acute myocardial infarction

Dimitrios A. Stakos^{1†}, Konstantinos Kambas^{2†}, Theocharis Konstantinidis², Ioannis Mitroulis³, Eirini Apostolidou², Stella Arelaki⁴, Victoria Tsironidou², Alexandra Giatromanolaki⁴, Panagiotis Skendros², Stavros Konstantinides^{1,5}, and Konstantinos Ritis^{2*}

Translational perspective

Neutrophils are involved in the pathophysiology of infracted coronary arteries in STEMI via NET structures. Platelets, activated by thrombin, are required for NET formation, while the integrity of NET scaffold contributes to the functionality of NET-bound TF. The blockage of NET formation or local neutralization of NET-mediated TF signalling constitutes candidate therapeutic targets.

to the process of SI.

Histopathological evaluation of thrombus in patients presenting with stent thrombosis. A multicenter European study: a report of the prevention of late stent thrombosis by an interdisciplinary global European effort consortium[†] PRESTIGE Investigators

Results	Overall 253 thrombus specimens were analysed; 79 (31.2%) from patients presenting with early ST, 174 (68.8%) from
	late ST; 79 (31.2%) were from bare metal stents, 166 (65.6%) from drug-eluting stents, 8 (3.2%) were from stents of
	unknown type. Thrombus specimens displayed heterogeneous morphology with platelet-rich thrombus and fibrin/fi-
	brinogen fragments most abundant; mean platelet coverage was 57% of thrombus area. Leukocyte infiltrations were
	hallmarks of both early and late ST (early: 2260 \pm 1550 per mm ² vs. late: 2485 \pm 1778 per mm ² ; P = 0.44); neutrophils
	represented the most prominent subset (early: 1364 \pm 923 per mm ² vs. late: 1428 \pm 1023 per mm ² ; P = 0.81). Leuko-
	cyte counts were significantly higher compared with a control group of patients with thrombus aspiration in spontan-
	eous myocardial infarction. Neutrophil extracellular traps were observed in 23% of samples. Eosinophils were present
	in all stent types, with higher numbers in patients with late ST in sirolimus-and everolimus-eluting stents.
Conclusion	In a large-scale study of histological thrombus analysis from patients presenting with ST, thrombus specimens displayed
	heterogeneous morphology. Recruitment of leukocytes, particularly neutrophils, appears to be a hallmark of ST. The
	presence of NETs supports their pathophysiological relevance. Eosinophil recruitment suggests an allergic component

Thrombus Immune Cell Composition Differences between Acute Ischemic Stroke and Acute Myocardial Infarction

of a cerebral vessel

outcomes

Neurology

Are there differences in immune cell composition and prevalence of NETs in patients with AIS and AMI?

Study question

doi:10.1212/WNL.000000000009532 Copyright © 2020 American Academy of Neurology

Acute myocardial infarction (AMI)

Coronary artery occlusion after

atheromatous plaque rupture

Neutrophil Extracellular Traps (NETs) are found in ipsilesional brain tissue from ischemic stroke patients

Denorme F et al. J Clin Invest 2022

Contents lists available at ScienceDirect

EClinicalMedicine

journal homepage: https://www.journals.elsevier.com/eclinicalmedicine

Research Paper

Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: A systematic review and meta-analysis

Mahmoud B. Malas^{1,*}, Isaac N. Naazie¹, Nadin Elsayed, Asma Mathlouthi, Rebecca Marmor, Bryan Clary

Department of Surgery, University of California San Diego Health System, San Diego, CA 92093, United States

42 studies/8271 patients

Findings: Of 425 studies identified, 42 studies enrolling 8271 patients were included in the meta-analysis. Overall venous TE rate was 21% (95% CI:17–26%): ICU, 31% (95% CI: 23–39%). Overall deep vein thrombosis rate was 20% (95% CI: 13–28%): ICU, 28% (95% CI: 16–41%); postmortem, 35% (95% CI:15–57%). Overall pulmonary embolism rate was 13% (95% CI: 11–16%): ICU, 19% (95% CI:14–25%); postmortem, 22% (95% CI:16–28%). Overall arterial TE rate was 2% (95% CI: 1–4%): ICU, 5% (95%CI: 3–7%). Pooled mortality rate among patients with TE was 23% (95%CI:14–32%) and 13% (95% CI:6–22%) among patients without TE. The pooled odds of mortality were 74% higher among patients who developed TE compared to those who did not (OR, 1.74; 95%CI, 1.01–2.98; P = 0.04).

Severe thrombotic complication in a COVID-19 patient

- 16th day of disease \bullet
- SpO₂ = 97%, FiO₂ 35% \bullet
- No smoking, BMI 25 \bullet
- Well-controlled hypertension \bullet
- No history of CVD event \bullet

- Neutrophils: 12760 /µl
- Lymphocytes: 680 /µl
- CRP: 7.71 mg/dl •
- LDH: 1057 U/L •
- D-Dimers: 976 ng/ml •

COVID-19 2nd Wards, First Department of Internal Medicine, University Hospital of Alexandroupolis

Micro-CLOTs

Microthrombi in the alveolar capillaries (arrowheads)

Ackermann M, et al. N Engl J Med. 2020

*Skendros P, *Mitsios A, *Chrysanthopoulou A. et al. J Clin Invest. 2020 Aug 6:141374

CORONAVIRUS

Complement C3 inhibition in severe COVID-19 using

Copyright © 2022 The Authors, some rights reserved; exclusive licensee

Complement C3 activation contributes to COVID-19 pathology, and C3 targeting has emerged as a promising therapeutic strategy. We provide interim data from ITHACA, the first randomized trial evaluating a C3 inhibitor, AMY-101, in severe COVID-19 (PaO2/FiO2 \leq 300 mmHg). Patients received AMY-101 (n = 16) or placebo (n = 15) in addition to standard of care. AMY-101 was safe and well tolerated. Compared to placebo (8 of 15, 53.3%), a higher, albeit nonsignificant, proportion of AMY-101–treated patients (13 of 16, 81.3%) were free of supplemental oxygen at day 14. Three nonresponders and two placebo-treated patients succumbed to disease-related complications. AMY-101 significantly reduced CRP and ferritin and restrained thrombin and NET generation. Complete and sustained C3 inhibition was observed in all responders. Residual C3 activity in the three nonresponders suggested the presence of a convertase-independent C3 activation pathway overriding the drug's inhibitory activity. These findings support the design of larger trials exploring the potential of C3-based inhibition in COVID-19 or other complement-mediated diseases.

✓ Thrombin and Kallikrein/kinin systems are strongly activated in severe COVID-19

Linkage between the complement and coagulation systems may represent a new pathway of complement activation

Skendros et al. Science Advances 2022

The biological processes during wound healing

Fan Yang, et al. Regenerative Medicine 2021

Neutrophil extracellular traps promote differentiation and function of fibroblasts

A

В

C

NETs IL-17+ were identified in close proximity to α -SMA-positive fibrocytes in lung and skin biopsy specimens

Chrysanthopoulou A, Mitroulis I, et al. J Pathol. 2014

- NETs are a source of citrullinated autoantigens and activate RA synovial fibroblast
- Synovial fibroblast-neutrophil interactions
 promote pathogenic adaptive immunity in RA

Down-regulation of KLF2 in lung fibroblasts is linked with COVID-19 immunofibrosis and restored by combined inhibition of NETs, JAK-1/2 and IL-6 signaling

3.0

low expression levels of KLF2 in human lung fibroblasts is correlated with their fibrotic activity

Chrysanthopoulou A*, Antoniadou C*, Natsi AM*, et al. Clin Immunol. 2023

Chrysanthopoulou A*, Antoniadou C*, Natsi AM*, et al. Clin Immunol. 2023

Neutrophil-fibroblast interaction in immunofibrosis of Crohn's disease

Paper in preparation

Neutrophil-fibroblast interaction in immunofibrosis of Crohn's disease

Paper in preparation

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ UNIVERSITY OF CRETE IATPIKH ΣΧΟΛΗ SCHOOL OF MEDICINE

Delineation of fibroblast-like synoviocyte-mediated immune responses in the pathogenesis of rheumatoid arthritis

Neofotistou-Themeli E.^{1, 2}, Chanis T.^{1, 2}, Semitekolou M.^{1, 2}, Sevdali E.^{1, 2}, Papadaki G.^{1, 2}, Goutakoli P.^{1, 2}, Drakos E.³, Bertsias G.^{1, 2, 4}, Verginis P.^{1, 2, 5}, Sidiropoulos P.^{1, 2, 4}

1 Laboratory of Rheumatology, Autoimmunity & Inflammation, Medical School, University of Crete; 2 Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Crete; 3 Department of Pathology, Medical School, University of Crete; 4 Clinic of Rheumatology, Clinical Immunology, University Hospital of Heraklion, Crete; 5 Laboratory of Immune Regulation and Tolerance, Medical School, University of Crete;

Presence of NETotic neutrophils expressing TF

in the fibrotic renal and aneurysmal aortic tissue of patients with essential hypertension

Study name	Medications	Clinical setting	Ischaemic events	Infections	All-cause
(year)					mortality
CANTOS (2017)	Canakinumab (150 mg) versus placebo	Secondary prevention of MI	↓ Non-fatal MI, non-fatal stroke or cardiovascular death: HR 0.85, 95% CI 0.74–0.98, <i>P</i> = 0.021; MI: HR 0.76, 95% CI 0.62–0.92; any stroke: HR 0.98, 95% CI 0.71–1.35	↑Fatal infections and sepsis	↔ HR 0.92, 95% CI 0.78–1.09
CIRT (2019)	Low-dose methotrexate versus placebo	Secondary prevention of MI or multivessel coronary artery disease	↔ Non-fatal MI, non-fatal stroke, cardiovascular death or hospitalization for unstable angina that led to urgent revascularization: HR 0.96, 95% CI 0.79–1.16, P=0.67	↔ Serious infection events	↔ HR 1.16, 95% CI 0.87–1.56
COLCOT (2019)	Low-dose colchicine versus placebo	Treatment within 30 days of an MI	↓ MI: HR 0.91, 95% CI 0.68–1.21; stroke: HR 0.26, 95% CI 0.10–0.70; VTE: HR 1.43, 95% CI 0.54–3.75	↑Pneumonia	↔ HR 0.98, 95% CI 0.64–1.49
LoDoCo2 (2020)	Low-dose colchicine versus placebo	Chronic coronary artery disease	↓ Cardiovascular death, MI, ischaemic stroke or ischaemia-driven coronary revascularization: HR 0.69, 95% CI 0.57–0.83; cardiovascular death, MI or ischaemic stroke: HR 0.72, 95% CI 0.57–0.92, P =0.007; MI: HR 0.70, 95% CI 0.53–0.93; ischaemic stroke: HR 0.66, 95% CI 0.35–1.25; VTE: HR 1.06, 95% CI 0.53–2.10	↔ Hospitalizations for infection	↔ HR 1.21, 95% CI 0.86–1.71

Table 2 | New anti-inflammatory approaches for the prevention of atherosclerosis and thrombosis

Stark K, Massberg S. Nat Rev Cardiol. 2021

EULAR recommendations for cardiovascular risk management in rheumatic and musculoskeletal diseases, including systemic lupus erythematosus and antiphospholipid syndrome

8. In patients with SLE, treatment with **hydroxychloroquine** (which is recommended for all SLE patients, unless contraindicated) **should be considered to also reduce the risk of cardiovascular events**. (LoE: 2b, GoR: B)

Drosos GC, Vedder D, Houben E et al. Ann Rheum Dis. 2022 Feb

Medication	Antithrombotic effects	Anti-inflammatory effects
Heparin	Inhibition of coagulation	Disruption of neutrophil extracellular traps
		Neutralization of histones
Low-dose aspirin	Inhibition of platelet activation	Increased synthesis of the pro- resolution mediator 15-epi-lipoxin A4
P2Y ₁₂ receptor inhibitors	Inhibition of platelet activation	Decreased pro-inflammatory mediator release
Direct-acting oral anticoagulants	Inhibition of coagulation	Inhibition of protease-activated receptors, which induce the expression of chemokines, cytokines and adhesion molecules

Table 1 | Anti-inflammatory effects of antithrombotic medications

Stark K, Massberg S. Nat Rev Cardiol. 2021

✓ Dysregulated innate immunity leading to excessive inflammation is involved in the whole spectrum of cardiovascular pathology implicating immune and non-immune cells (tissue)

✓ Inflammation emerges as a promising candidate therapeutic target in addition to optimizing risk factors and targeting platelets and the coagulation system

Many thanks!

C. Antoniadou E. Gavriilidis AM. Natsi **E.** Pavlos

V. Tsironidou

I. Mitroulis

A. Chrysanthopoulou

K. Kambas

A. Mitsios

A. Arampatzioglou

- T. Konstantinidis
- V. Papadopoulos

C. Papagoras

D. Stakos

G. Kouklakis

K. Ritis

D. E E. A **G**. **[** G. (**I.** Ke

A. 6

Μ.

A. I

E. G

P. S

Collaborators

Boumpas	D. Yancopoulou			
Andreakos	D. Mastellos			
Divolis	JD. Lambris			
Germanidis				
otsianidis	Г			
Cietueueueleki	CytoNET			
Slatromanolaki	InTechThrace/AtheroNET			
Koffa				
Lazaridis	ЕПАVЕК 2014–2020 ЕПІХЕІРНΣІАКО ПРОГРАММА	THINE EEV		
	ΔΝΤΔΓΟΝΙΣΤΙΚΟΤΗΤΔ			
Gkaliagkousi	ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ ΚΑΙΝΟΤΟΜΙΑ	UU3		
Gkaliagkousi Jideras		****		

ανάπτυξη - εργασία - αλληλεγγύη

Επίκαιρα Θέματα Φλεγμονήs και Θρόμβωσηs

A' Denember op oet Dielkolog of Eleven Gemeentopen blogs onto Agencolog on, Agencologien, Ampergane Denemberogen Optim

22-23 Σεπτεμβρίου 2023 Ξενοδαχείο Grecotel Egnatia Αλεξανδρούπολη

Inflammation & Thrombosis

Alexandroupolis Meeting

22–23 September 2023 Hotel Grecotel Egnatia Alexandroupolis

Etaipela Oppareorg, Erio nguonialg, Etaipela Oppareorgo CONVIN memoraning Energina dan ginta tang unterneting ita aning i

Dr. John D. Lambris

