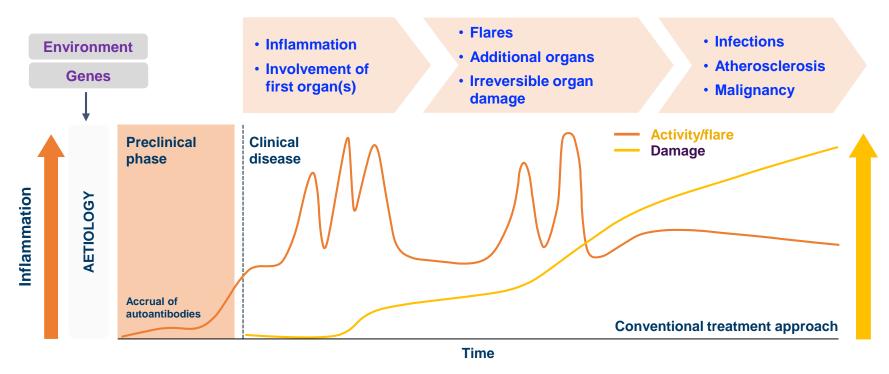
# Early Systemic Lupus Erythematosus (SLE)

## **George Bertsias**


Rheumatology and Clinical Immunology, University of Crete Medical School and IMBB-FORTH





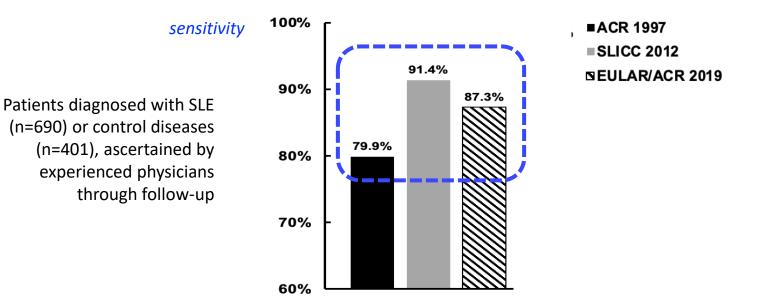
17-06-2023

# SLE has a long disease course, typically with alternating periods of activity and quiescence



## Outline

- Clinical characteristics and burden of early SLE
- Why is early diagnosis and treatment of SLE important?
- What are the early pathogenic events in SLE?
- Strategies for the early identification of SLE and individuals at-risk
- Possibilities for personalised intervention


## Early SLE: not always a 'full-blown' disease

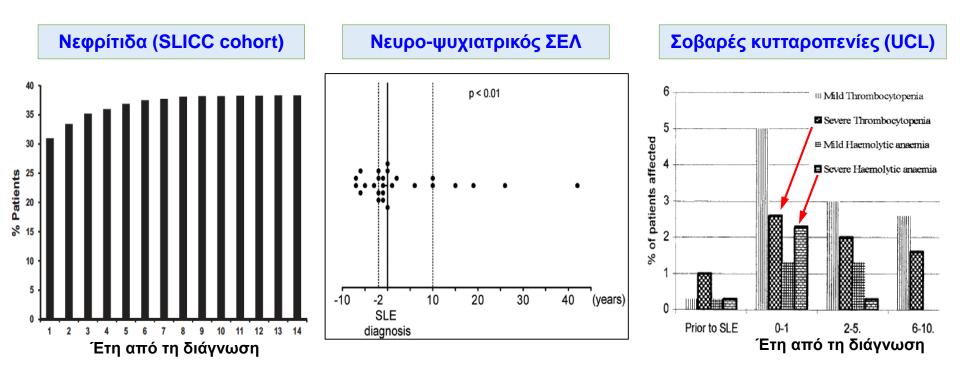
| Items<br>Centre based<br>No. patients | 'Attikon' cohort<br>Europe<br>N = 555 | Mosca et al. <sup>3</sup><br>Multi-centre<br>N = 389 | Pons-Estel et al. <sup>25</sup><br>Latin America<br>N = 1214 | Joo et al. <sup>26</sup><br>Asia<br>N = 996 | Fiorot et al. <sup>27</sup><br>Latin America (childhood onset)<br>N = 1312 | Total $N = 4466$ |
|---------------------------------------|---------------------------------------|------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------|------------------|
|                                       | 11-000                                | 11-207                                               |                                                              | 11-770                                      |                                                                            | 11-1100          |
| Malar rash                            | 39.8%                                 | 49.5%                                                | 23.6%                                                        | 44%                                         | 52.9%                                                                      | 41.1%            |
| Photosensitivity                      | 50.8%                                 | 31.6%                                                | 24.5%                                                        | 35%                                         | 45.0%                                                                      | 36.8%            |
| Discoid                               | 7.4%                                  | 9.3%                                                 | 5.3%                                                         | 8%                                          | 5.3%                                                                       | 6.5%             |
| Oral ulcers                           | 17.7%                                 | 21.6%                                                | 10.5%                                                        | 36%                                         | 32.8%                                                                      | 24.6%            |
| Alopecia                              | 22.3%                                 | 30.6%                                                | 20.3%                                                        | _                                           | 21.7%                                                                      | 22.3%            |
| Arthritis                             | 73.3%                                 | 57.6%                                                | 67.3%                                                        | 65%                                         | 68.4%                                                                      | 67.0%            |
| Pericarditis                          | 7.0%                                  | 18.8%                                                | 2.7%                                                         | 15%                                         | 19.1%                                                                      | 12.2%            |
| Pleuritis                             | 7.6%                                  | 22.4%                                                | 3.6%                                                         | 19%                                         | 17.6%                                                                      | 13.3%            |
| Renal involvement                     | 10.3%                                 | 13.1%                                                | 5.3%                                                         | 42%                                         | 40.8%                                                                      | 25.1%            |
| Neuropsychiatric                      | 11.5%                                 | 9.2%                                                 | 4.1%                                                         | 6%                                          | 11.0%                                                                      | 7.9%             |
| Leucopaenia                           | 23.8%                                 | 16.2%                                                | 5.1%                                                         | 61%                                         | 41.8%                                                                      | 31.6%            |
| Thrombocytopaenia                     | 12.3%                                 | 6.6%                                                 | 5.2%                                                         | 24%                                         | 18.9%                                                                      | 15.5%            |
| AIHA                                  | 2.7%                                  | 4.6%                                                 | 2.4%                                                         | 14%                                         | 21.4%                                                                      | 10.8%            |
| Fever                                 | 25.0%                                 | 34.5%                                                | 28.6%                                                        | _                                           | _                                                                          | 28.7%            |
| Raynaud's                             | 33.0%                                 | 22.1%                                                | 10.2%                                                        | _                                           | _                                                                          | 18.2%            |
| ANA                                   | 93.7%                                 | 99.5%                                                | _                                                            | 100%                                        | 93.4%                                                                      | 96.1%            |
| Anti-dsDNA                            | 36.6%                                 | 71.7%                                                | _                                                            | 79%                                         | 59.4%                                                                      | 62.1%            |

Table 3 Comparison of clinical features of SLE patients at the time of diagnosis from large SLE cohorts around the world

ANA: antinuclear antibodies; AIHA; Autoimmune hemolytic anemia; Anti-dsDNA; antidouble-strand DNA.

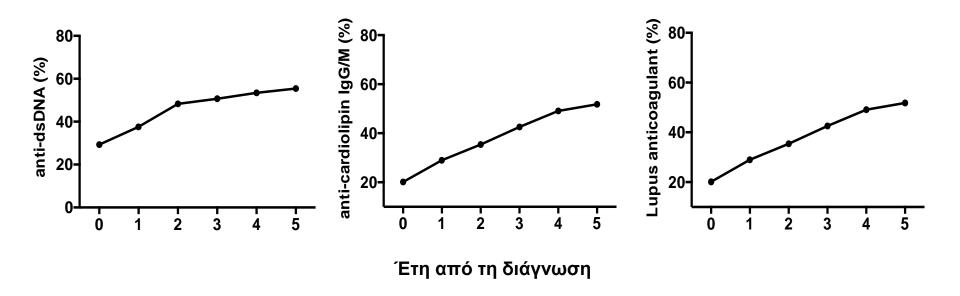
## Classification criteria have suboptimal diagnostic performance at early disease (<3 years)




Adamichou C, et al. Ann Rheum Dis. 2020; 79(2): 232-241

# Classification criteria can miss or delay the diagnosis of SLE in a fraction of patients with major/severe disease

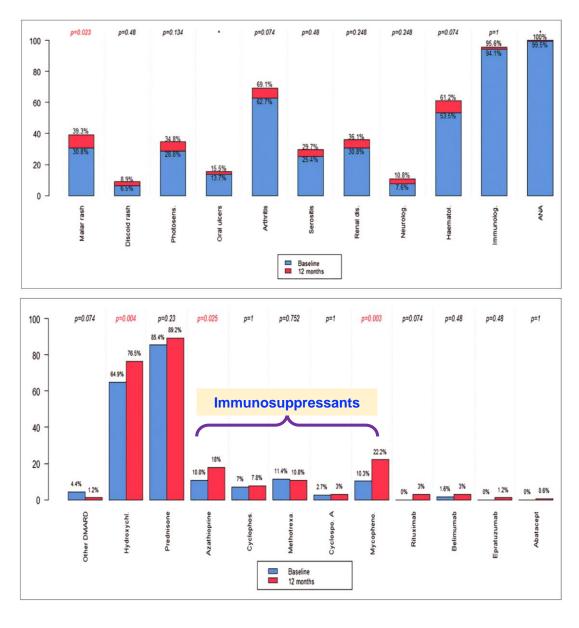
|                                 | Sensitivity of the criteria |            |                |  |
|---------------------------------|-----------------------------|------------|----------------|--|
|                                 | ACR 1997                    | SLICC 2012 | EULAR/ACR 2019 |  |
| Neurological SLE                |                             |            |                |  |
| Moderate or severe (n=60)       | 81.7%                       | 91.7%      | 90.0%          |  |
| Renal SLE                       |                             |            |                |  |
| Moderate or severe (n=59)       | 96.6%                       | 98.3%      | 93.2%          |  |
| Hematological SLE               |                             |            |                |  |
| Moderate or severe (n=80)       | 81.3%                       | 95.0%      | 87.5%          |  |
| Severe SLE (according to BILAG) |                             |            |                |  |
| ≥1 A (n=127)                    | 82.7%                       | 92.9%      | 88.2%          |  |


### Physician (rheumatologist) diagnosis predated classification by >3 months in 17.3%–19.9% of cases

## Οι μείζονες εκδηλώσεις του ΣΕΛ εμφανίζονται συνηθέστερα κοντά στη διάγνωση ή εντός των πρώτων 5-10 ετών



Hanly J, et al. *Rheumatology*. 2015 [*ahead of print*]; Hawro T, et al. *PLoS One*. 2015; 10: e0119911; Sultan SM, et al. *Rheumatology*. 2003; 42: 230–234; Joo YB, et al. *Int J Rheum Dis*. 2015; 18:117-28


## Αυξανόμενο ανοσολογικό φορτίο τα πρώτα έτη μετά τη διάγνωση του ΣΕΛ



Urowitz MB, et al. Arthritis Care Res. 2012; 64: 132-7; Joo YB, et al. Int J Rheum Dis. 2015; 18:117-28; Swaak AJ, et al. Rheumatology. 1999; 38: 953-8; Jacobsen S, et al. Clin Rheumatol. 1998; 17:468-477

# Early SLE progression during the first 12 months

- Accrual of new SLE manifestations/organ involvement
- Increased need for treatments (glucocorticoids, immunosuppressants)
- Only about 35% of patients achieves clinical remission
- □ Impaired health-related quality of life
- Accrual of comorbidities and organ damage



Sebastiani GD, et al. *Lupus*. 2018; 27: 1479-88 Piga M, et al. Rheumatology. 2020; 59: 2272–81 Segura BT, et al. Rheumatology. 2020; 59: 524–33 Koelmeyer R, et al. Lupus Sci Med. 2020; 7: e000372

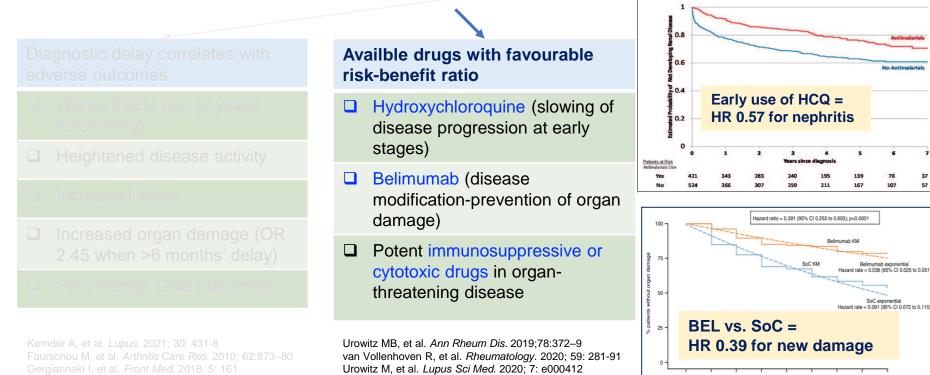
## Early SLE is linked to substantial disese burden

| Table 3. Results of adjusted multivariate regression to determine independent effect of variables on SMR estimates* |                                                | ine Hig                                            | Highest rates of thrombosis were observed during |                            |                                          |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------|--------------------------------------------------|----------------------------|------------------------------------------|
|                                                                                                                     |                                                | the 2 years before till 2 years after diagnosis !! |                                                  |                            |                                          |
| Female sex                                                                                                          | 1.2 (1.0-1.4)                                  |                                                    |                                                  |                            |                                          |
| Age, years<br><40                                                                                                   | Time since SLE<br>diagnosis                    | Venous thrombosis                                  |                                                  | Arterial thrombosis        |                                          |
| 40-59<br>$\geq 60$<br>SLE duration, years                                                                           | _                                              | Rate of events per 1000 PY                         | Rate ratios (95% CI)<br>adjusted for age         | Rate of events per 1000 PY | Rate ratios (95% CI)<br>adjusted for age |
| <1<br>1-4                                                                                                           | >5 years before SLE<br>diagnosis               | 1.2                                                | 1.0 (Ref. Grp)                                   | 0.4                        | 1.0 (Ref. Grp)                           |
| 5-9<br>10-19<br>≥20                                                                                                 | 2-5 years before<br>SLE diagnosis              | 2.3                                                | 1.5 (0.8, 2.7)                                   | 1.8                        | 3.5 (1.6, 7.4)                           |
| Calendar-year period of SLE diagnosis 1970–1979                                                                     | 0-2 years before<br><mark>SLE diagnosis</mark> | <mark>11.4</mark>                                  | <mark>7.0 (4.7, 10.5)</mark>                     | <mark>8.9</mark>           | <mark>15.9 (8.8, 28.8)</mark>            |
| 1980–1989<br>1990–2001<br>Country                                                                                   | 0-2 years after SLE<br>diagnosis               | <mark>12.5</mark>                                  | <mark>7.4 (5.0, 11.1)</mark>                     | <mark>10.5</mark>          | <mark>17.7 (9.9, 31.9)</mark>            |
| Canada<br>England                                                                                                   | 2-5 years after SLE diagnosis                  | 6.7                                                | 3.9 (2.5, 6.1)                                   | 4.5                        | 7.2 (3.7, 13.8)                          |
| Scotland<br>Iceland<br>US                                                                                           | 5+ years after SLE<br>diagnosis                | <mark>9.1</mark>                                   | 5.0 (3.5, 7.2)                                   | <mark>11.8</mark>          | 15.8 (9.2 <i>,</i> 27.3)                 |
| Sweden<br>South Korea                                                                                               | 0.7 (0.3–2.0)                                  |                                                    |                                                  |                            |                                          |

\* SMR = standardized mortality ratio; 95% CI = 95% confidence interval. SLE = systemic lupus erythematosus.

T 11 2 Deculte of adjusted exciting sists as ensuring to determine

<sup>†</sup> Variables adjusted concomitantly for all others (sex, age, SLE duration, calendar-year period, and country).


# Why is prompt SLE diagnosis important?



- Worse PROs (eg, physical functioning)
- □ Heightened disease activity
- Increased flares
- Increased organ damage (OR
   2.45 when >6 months' delay)
- Poor kidney, CNS outcomes

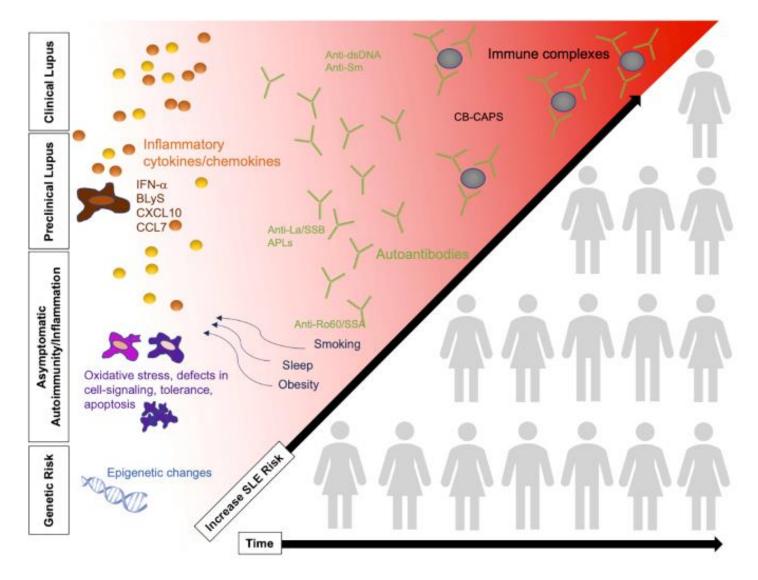
Kernder A, et al. *Lupus*. 2021; 30: 431-8 Faurschou M, et al. *Arthritis Care Res*. 2010; 62:873–80 Gergiannaki I, et al. *Front Med*. 2018; 5: 161 Kapsala NN, et al. *Clin Exp Rheumatol*. 2023; 41: 74-81

## Why is prompt SLE diagnosis important?

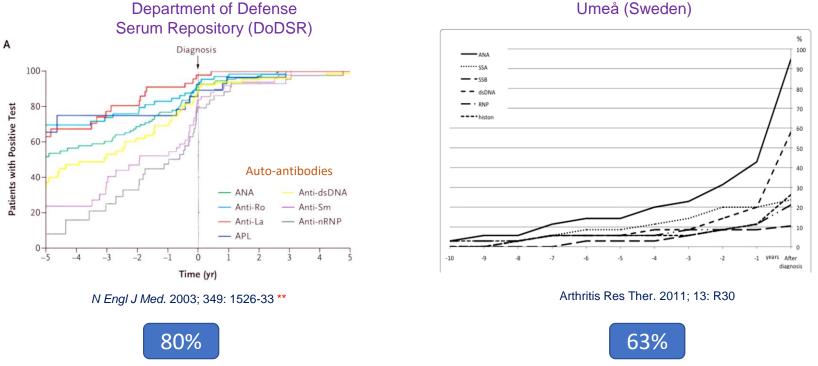


37

57


Years since haseline

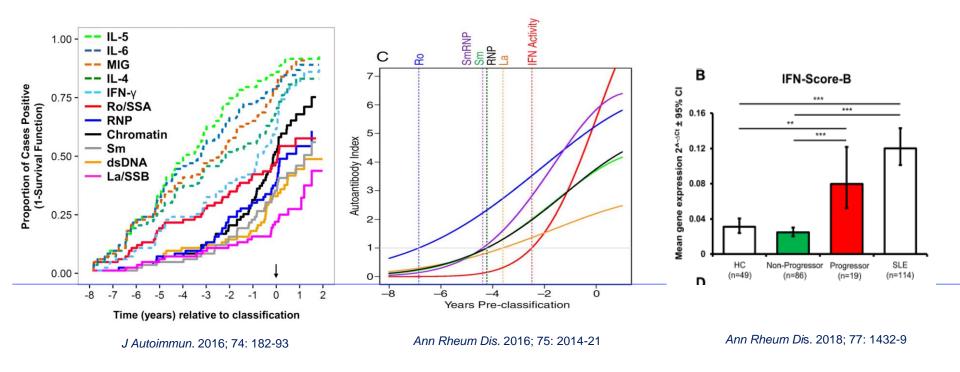
Costedoat-Chalumeau N, et al. Presse Med. 2014; 43:e167–180 Pons-Estel GJ, et al. Lupus. 2013; 22: 899-907 Kasitanon N, et al. Rheumatology. 2015; 54: 868-75


# Outline

- Clinical characteristics and burden of early SLE
- Why is early diagnosis and treatment of SLE important?
- What are the early pathogenic events in SLE?
  - ✓ Studies before the onset of lupus
  - ✓ Studies in early, established lupus

## **Multistep progression to clinical SLE**



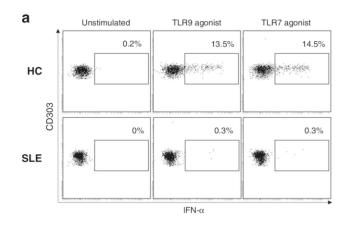

## Autoantibodies may precede the clinical onset of SLE

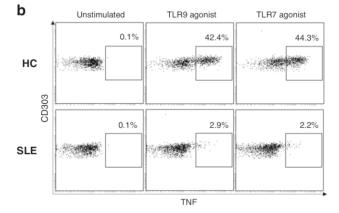


Umeå (Sweden)

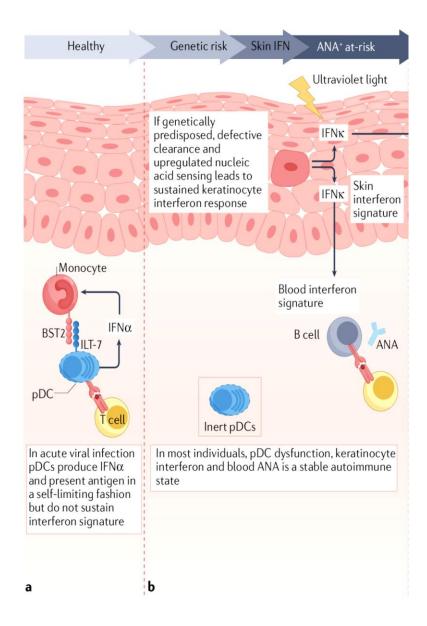
- Sequential appearance: ANAs  $\rightarrow$  aPL, anti-Ro/La (mean 3.2 years)  $\rightarrow$  anti-dsDNA (mean 2.2 years)  $\rightarrow$  anti-Sm/anti-RNP (mean 1.2 years)
- Odds ratios for SLE: 18.1 for anti-dsDNA;11.5 for ANA; 8.9 for anti-Ro/SSA •
- Accumulation of autoAbs closer to diagnosis/classification (? potentially delayed by early HCQ use) •
- aCL IgG/IgM (15–20%): tendency for broader clinical manifestations

## Immune aberrancies may predate SLE classification

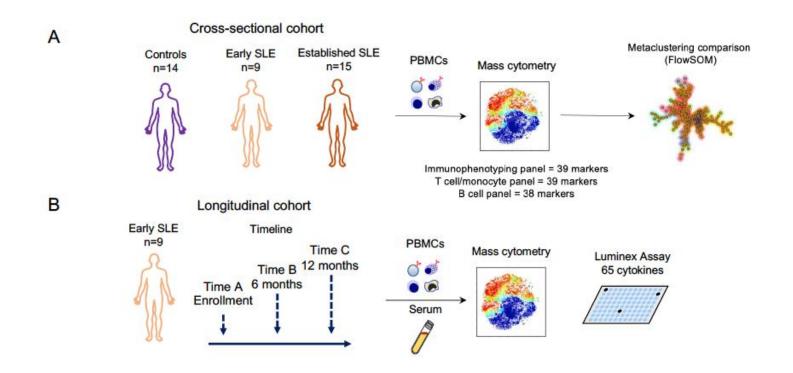




- "IFN-B score": odds ratio 3.8 for SLE in ANA+ "at-risk" individuals
- A variety of immune aberrancies may predate SLE classification: ↑ BLyS, ↑ T<sub>H</sub>17 cells; ↓ T<sub>req</sub>
- Combination of immune mediators and autoantibodies provides enhanced predictive power
- Small case series: HCQ might suppress IFN score and BAFF levels in iSLE or new-onset SLE

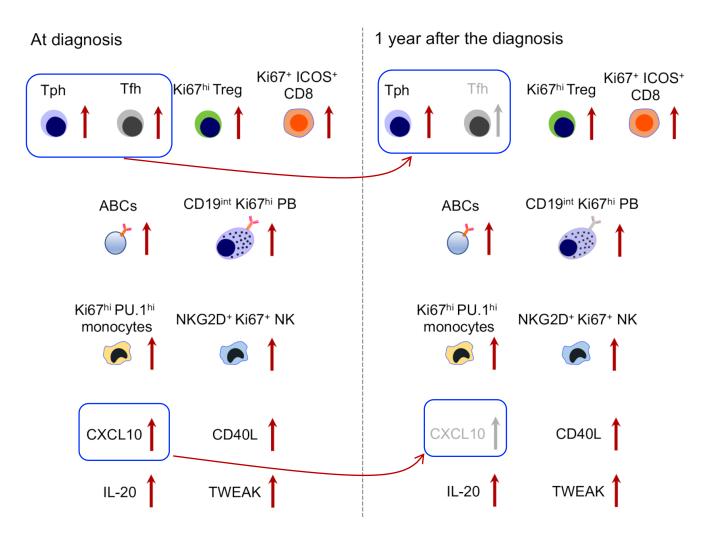
*Front Immunol.* 2022; 13: 890522; *Front Immunol.* 13: 866181; *Arthritis Rheumatol.* 2017; 69: 630–42; *Arthritis Res Ther.* 2019; 21(1): 260; *J Rheumatol.* 2021; 48: 847–51


## Keratinocytes represent an important source of type I interferon at early lupus

## Contrary to circulating SLE pDCs ... (exhausted??)







Healthy Q At-risk h SLE



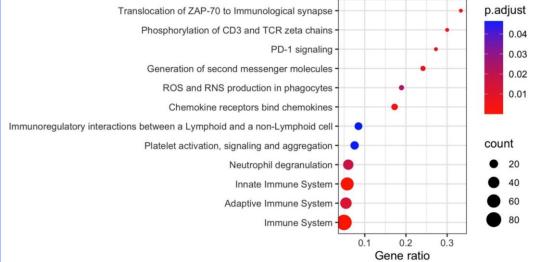
## Immunoprofiling of early SLE patients




# Two major helper T cell subsets and unique Ki-67+ proliferating immune cell subsets are expanded in early SLE



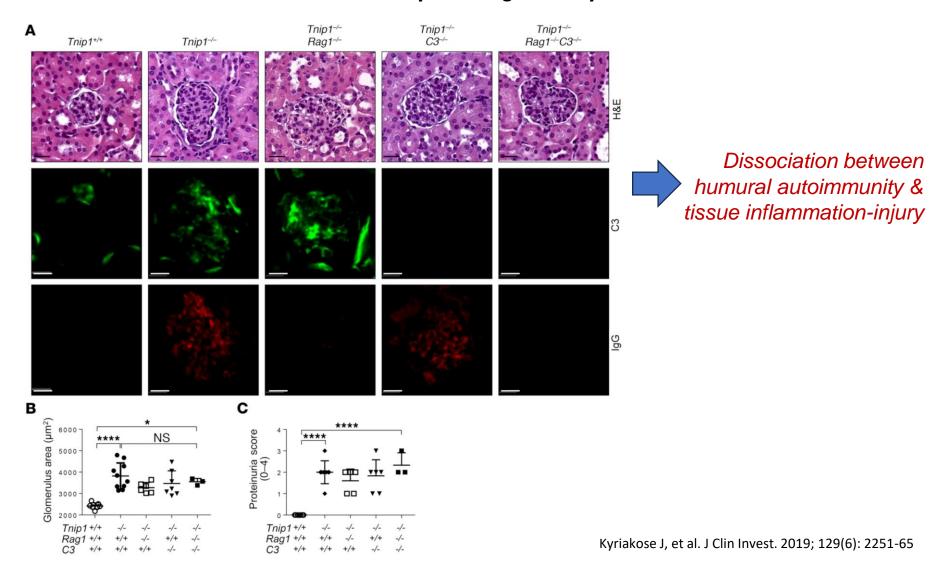
Sasaki T, et al. Arthritis Rheumatol. 2022; 74: 1808-21


# Why not all individuals with autoantibodies develop autoimmunity?



## Data from lupus-prone mice: both innate and adaptive immune activation underly the progression from preclinical to clinical SLE

- Neutrophil degranulation
- ROS production in phagocytes
- TCR signalling
- Signal transduction by chemokine receptors
- Costimulation through PD-1 signalling

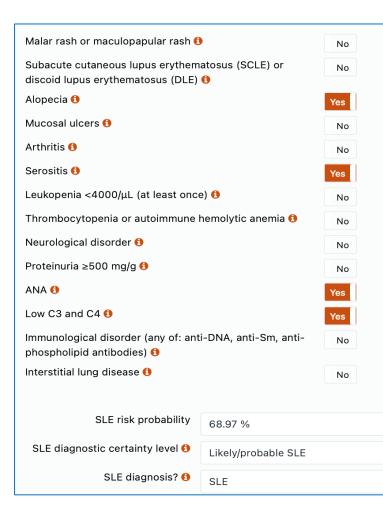

The lupus-susceptibility risk genes *PTPRC*, *IRF8*, *NCF1* and *ITGAM*, emerged as hub network genes





NZBxNZW F1

### Early SLE glomerulonephritis (ABIN1-deficient mice) proceeds independently of autoreactive Abs and C3-mediated complement activation: the role of patrolling monocytes




# Outline

- Clinical characteristics and burden of early SLE
- Why is early diagnosis and treatment of SLE important?
- What are the early pathogenic events in SLE?
- Strategies for the early identification of SLE and individuals at-risk
- Possibilities for personalised intervention

## Development of SLERPI: a machine learning-based diagnostic index in SLE

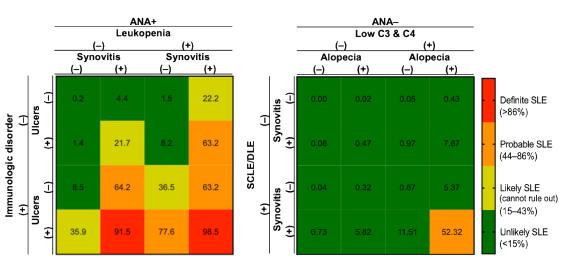
|                            |                 | OR (95% CI)         | P value                |                                                       |
|----------------------------|-----------------|---------------------|------------------------|-------------------------------------------------------|
| Thrombocytopenia/AIHA -    | <b>├──♦</b> ──┤ | 37.19(9.03–153.10)  | 5.50×10 <sup>-7</sup>  |                                                       |
| Malar/maculopapular rash - | ⊢◆⊣             | 26.98 (17.66–41.20) | 1.67×10 <sup>-52</sup> |                                                       |
| ANA -                      | ⊢◆⊣             | 22.89 (14.57–35.96) | 4.67×10 <sup>-42</sup> |                                                       |
| Low C3 and C4 -            | ⊢.              | 17.97 (7.75–41.67)  | 1.64×10 <sup>-11</sup> |                                                       |
| Proteinuria -              |                 | 15.94 (4.90–51.81)  | 4.18×10 <sup>-6</sup>  | Odds ratio for SLE vs.<br>competing disease           |
| Immunologic disorder –     | ⊢◆⊣             | 13.69 (8.19–22.88)  | 1.72×10 <sup>-23</sup> |                                                       |
| SCLE/DLE -                 |                 | 9.40 (4.93–17.92)   | 1.05×10 <sup>-11</sup> |                                                       |
| Alopecia -                 | I✦I             | 7.02(4.94–9.97)     | 1.42×10 <sup>-27</sup> |                                                       |
| Leukopenia -               | ⊢◆⊣             | 6.81 (4.31–10.75)   | 1.80×10 <sup>-16</sup> |                                                       |
| Mucosal ulcers -           | <b>◆</b>        | 4.61 (3.19–6.66)    | 3.73×10 <sup>-16</sup> |                                                       |
| Neurologic disorder –      | ◆               | 3.83 (1.73–8.48)    | 9.38×10 <sup>-4</sup>  |                                                       |
| Synovitis -                | I✦I             | 2.45 (1.66–3.62)    | 6.58×10 <sup>-6</sup>  |                                                       |
| Serositis -                | ⊢◆⊣             | 1.94 (1.22–3.08)    | 5.08×10 <sup>-3</sup>  | +1 additional feature (interstitial lung              |
| <br>0.                     | 1 1 10 100 1000 |                     |                        | disease) with negative association                    |
|                            | OR (95% CI)     | Adar                | michou C*, Genitr      | rsaridi I*, et al. Ann Rheum Dis. 2021; 80(6): 758-66 |



Web version: https://www.rheumatology-uoc.gr/el/slerpi



### **Probabilistic approach to SLE diagnosis**


"Definitive SLE"

o "Likely SLE"

• "Cannot rule-out SLE"

o "Other CTD more likely than SLE"

against lupus-mimicking rheumatic diseases



## An inception cohort of individuals 'at-risk' to SLE

| Age: 18 to 50 years                                                   |                                                     |                                                      |                                                                                 |  |  |  |
|-----------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|
| Group A                                                               | Group B                                             | Group C                                              | Group D                                                                         |  |  |  |
| $ANA \ge 1:640$                                                       | <b>ANA</b> ≥ 1:80                                   | ANA-negative                                         | First-degree relative of SLE                                                    |  |  |  |
| <u>PLUS</u>                                                           | <u>PLUS</u>                                         | <u>PLUS</u>                                          | PLUS                                                                            |  |  |  |
| ≥1 additional feature<br>(serological or clinical)                    | ≥2 additional features<br>(serological or clinical) | ≥1 serological<br><u>AND</u><br>≥2 clinical features | ≥2 additional features<br>(serological [ <b>including ANA</b> ]<br>or clinical) |  |  |  |
| Not fulfilling the ACR 1997 or EULAR/ACR 2019 classification criteria |                                                     |                                                      |                                                                                 |  |  |  |

□ No physician diagnosis of SLE or other inflammatory rheumatic disease

□ Not receiving ≥20 mg/day prednisone or csDMARD/ISTs (except HCQ)

# Methodology: evaluation at baseline and every 4 to 12 months depending on the disease status



#### **Inception cohort**

- autoAbs+ individuals or FDRs
- not satisfied SLE criteria





Demographics, family history, infections and other past history

Hematological, urinalysis and serological parameters

Lifestyle exposures and use of medications

Whole blood collection

Monitored prospectively for up to 5 years



## Transition to classifiable SLE

## **Baseline characteristics**

#### 378 individuals screened

289 individuals enrolled

235 individuals met the inclusion criteria and had at least 6 months follow-up

| Gender (female)                | 94.0%       |  |
|--------------------------------|-------------|--|
| Race (white)                   | 97.9%       |  |
| Age (years, mean ± SD)         | 37.0 ± 11.3 |  |
| Education (<12 years)          | 21.7%       |  |
| Residence (rural)              | 19.1%       |  |
| First degree relative with SLE | 10.6%       |  |
| 1997 ACR items (baseline)      |             |  |
| Malar rash                     | 14.9%       |  |
| Discoid rash                   | 1.7%        |  |
| Photosensitivity               | 24.3%       |  |
| Ulcers                         | 8.9%        |  |
| Synovitis                      | 28.1%       |  |
| Serositis                      | 1.3%        |  |
| Renal                          | 0.4%        |  |
| Neurological                   | 0.9%        |  |
| Hematological                  | 20.9%       |  |
| Immunological                  | 23.6%       |  |
| ANA                            | 80.9%       |  |
|                                |             |  |

## Transition to classifiable SLE (median follow-up 21 months)

| SLE classified                                     | No. (%)    |
|----------------------------------------------------|------------|
| by the ACR-97 and/or the EULAR/ACR-19 criteria     | 52 (22.1%) |
| by BOTH the ACR-97 AND the EULAR/ACR-19 criteria   | 19 (8.1%)  |
| by the ACR-97 BUT NOT the EULAR/ACR-19 criteria    | 11 (4.7%)  |
| by the EULAR/ACR-19 BUT<br>NOT the ACR-97 criteria | 22 (9.4%)  |

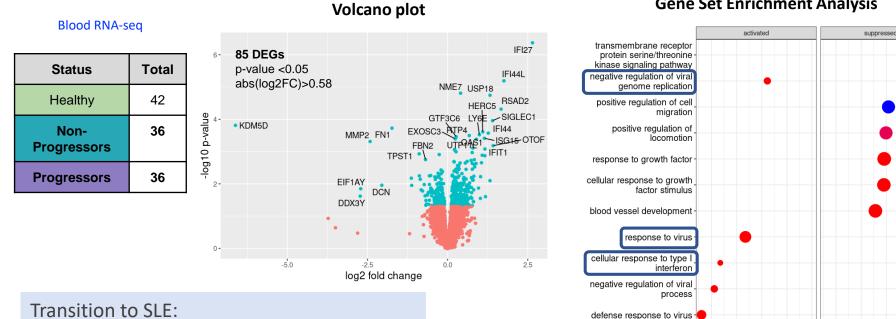
| Classification criteria | No. new<br>items/score |
|-------------------------|------------------------|
| ACR 1997                | 1.4 ± 0.6              |
| EULAR/ACR 2019          | 1.8 ± 3.3              |

Majority of transitions occurred within the first 18 months

## **New-onset features of SLE**

• Predominant mucocutaneous (ACLE: 29.3%, alopecia: 17.1%, ulcers: 9.8%) and joints (56.1%), and serological abnormalities (anti-DNA: 12.2%, low C3/C4: 19.5%)

|                                | No. (%)   |  |  |  |
|--------------------------------|-----------|--|--|--|
| Non-criteria immunol. features |           |  |  |  |
| Anti-Ro/SSA                    | 5 (12.2%) |  |  |  |
| Anti-La/SSB                    | 2 (4.9%)  |  |  |  |
| Anti-RNP                       | 0         |  |  |  |
| Treatments                     |           |  |  |  |
| Azathioprine                   | 2 (4.9%)  |  |  |  |
| Belimumab                      | 1 (2.4%)  |  |  |  |
| Cyclophosphamide               | 1 (2.4%)  |  |  |  |
| Ciclosporin                    | 1 (2.4%)  |  |  |  |
| Methotrexate                   | 7 (17.1%) |  |  |  |
| Mycophenolate                  | 1 (2.4%)  |  |  |  |


 ✓ About 25% had moderate/severe form of SLE

## Demographic and clinical features associated with the transition from 'at-risk' to classfied SLE

| Baseline features            | Progression to SLE<br>(ACR 1997 and/or EULAR/ACR 2019<br>criteria) |         |  |  |
|------------------------------|--------------------------------------------------------------------|---------|--|--|
|                              | Hazard ratio (95% CI)                                              | P value |  |  |
| FDR(s) with SLE (yes)        | 2.21 (1.07–4.54)                                                   | 0.031   |  |  |
| Smoking                      |                                                                    |         |  |  |
| Never smoker                 | 1.00                                                               |         |  |  |
| Smoker – active              | 1.23 (0.56–2.72)                                                   | 0.610   |  |  |
| Smoker – past                | 2.15 (1.17–3.96)                                                   | 0.014   |  |  |
| Mediterranean score (0 to 8) | 0.88 (0.76–1.02)                                                   | 0.090   |  |  |
|                              |                                                                    |         |  |  |
| Malar rash                   | 1.76 (0.92 – 3.36)                                                 | 0.087   |  |  |
| Photosensitivity             | 2.37 (1.35 – 4.17)                                                 | 0.003   |  |  |

| 1.70 (0.02 0.00)    | 0.007                                                                                                                                              |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.37 (1.35 – 4.17)  | 0.003                                                                                                                                              |
| 1.87 (0.84 – 4.16)  | 0.125                                                                                                                                              |
| 4.87 (1.17 – 20.24) | 0.029                                                                                                                                              |
| 1.85 (0.92 – 3.71)  | 0.082                                                                                                                                              |
| 2.56 (0.62 – 10.56) | 0.193                                                                                                                                              |
| 0.22 (0.03 – 1.61)  | 0.136                                                                                                                                              |
| 2.13 (0.77 – 5.93)  | 0.148                                                                                                                                              |
| 0.52 (0.27 – 1.02)  | 0.057                                                                                                                                              |
|                     | 2.37 (1.35 - 4.17) $1.87 (0.84 - 4.16)$ $4.87 (1.17 - 20.24)$ $1.85 (0.92 - 3.71)$ $2.56 (0.62 - 10.56)$ $0.22 (0.03 - 1.61)$ $2.13 (0.77 - 5.93)$ |

### Baseline molecular signatures discriminate individuals who progress or not to SLE

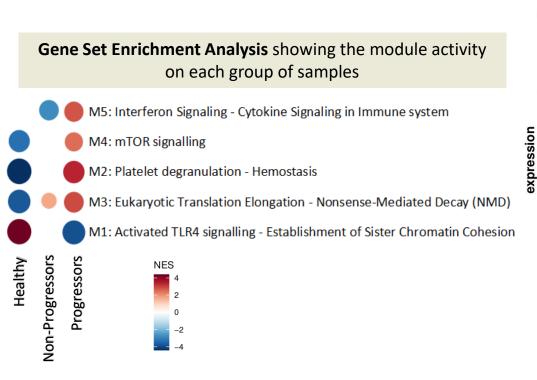


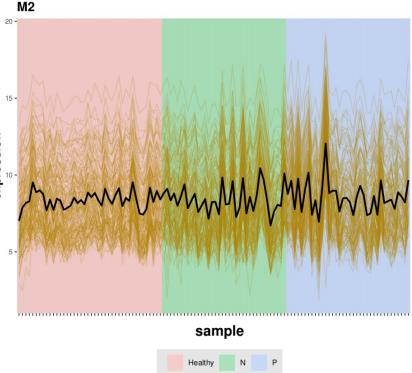
#### **Gene Set Enrichment Analysis**

0.25 0.30 0.35 0.40 0.20 0.25 0.30 0.35 0.4

GeneRatio

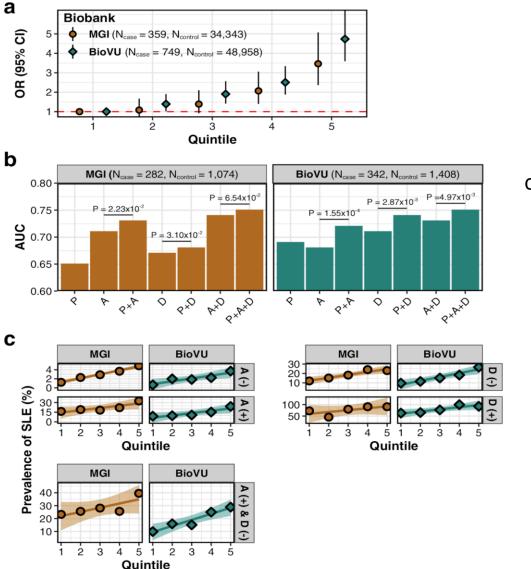
defense response to symbiont


0.20


#### Transition to SLE:

- ✓ Increased IFI27, OTOF, IFI44L expression
- ✓ Deregulation of response to type I IFN

### Risk stratification in individuals with preclinical lupus: gene-modular (WGCNA) analysis


#### **Gene co-expression networks**





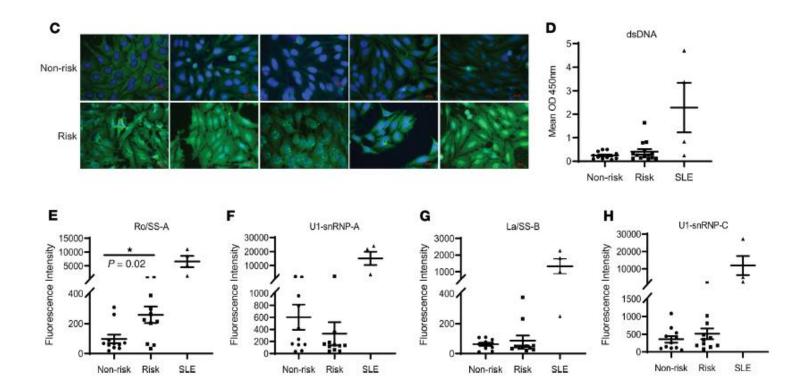
Russo P.S.T., et al., BMC Bioinformatics, 2018

## How can we further define individuals at-risk for SLE?

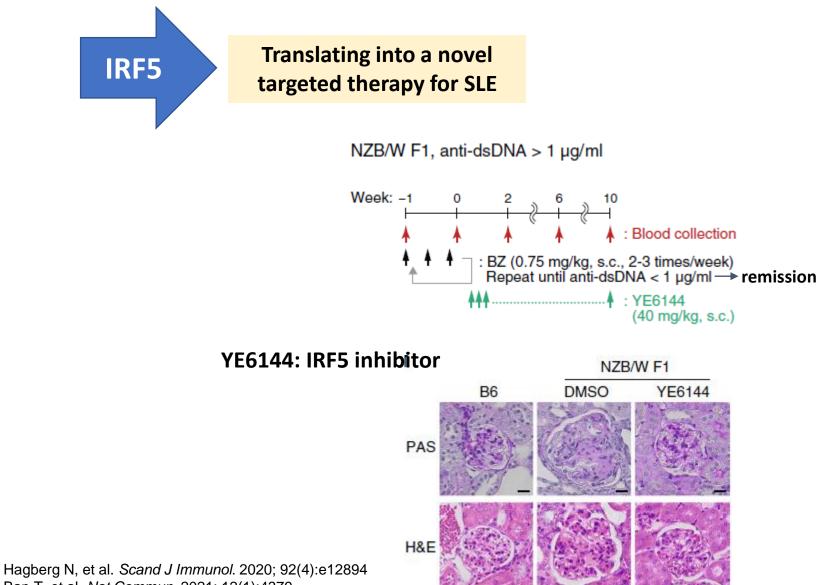


# >183 risk susceptibility loci have been associated with SLE

### **Polygenic Risk Scores (PRS)**


correlate with earlier disease onset and increased burden/damage of SLE

Nat Commun. 2023; 14: 668; Front Genet. 2022; 13: 902793; Ann Rheum Dis. 2020; 79: 363–9


## The example of IRF5 risk variant

RESEARCH ARTICLE

#### *IRF5* genetic risk variants drive myeloidspecific IRF5 hyperactivation and presymptomatic SLE



## A step towards personalised intervention



Ban T, et al. Nat Commun. 2021; 12(1):4379.

## Take-home messages

- Early SLE has substantial clinical burden; mild cases may transit into more severe disease
- Early recognition and management of SLE is critical to ensure better outcomes
- The molecular and cellular events of early SLE remain largely unexplored and may be facilitated by preclinical/early disease cohorts
- Abberant type I inteferon is a very early event in SLE pathogenesis, possibly driving altered metabolic/functional changes in immune cells
- Still, it is uncertain whether the whole spectrum of SLE disease follows this 'progression path'. E.g., severe organ-dominant lupus?
- Possible opportunities for individualised preventative interventions

# Acknowledgments

#### Lab

Maria Semitekolou Despoina Kosmara Dimitra Nikoleri Sofia Papanicolaou Konstantina Pambouka Eirini Sevdali Panagiota Goutakoli Elpida Neofotistou Theodoros Chanis

Chrysa Stathopoulou Spyros Georgakis Garyfalia Papadaki

#### UoC

Mary Adamaki Panayotis Verginis

#### Clinic

Prodromos Sidiropoulos Argyro Repa Nestor Avgustidis Nikolaos Kougkas Christina Adamichou Myrto Nikoloudaki Lena Kalogiannaki Irini Flouri **Computational Genomics Lab – BSRC Alexander Fleming** 

Christoforos Nikolaou Sofia Papanicolaou Dimitrios Konstantopoulos

#### **BRFAA - NKUA**

Dimitrios Boumpas Dionysios Nikolopoulos Aggelos Banos Antigoni Pieta Noemin Kapsala Antonis Fanouriakis

#### **FOREUM collaborators**

Luis Innes Marta Mosca Laura Andreoli Angela Tincani

## **FUNDING**











**Research Account Funds (UoC)**