

Pathogen Recognition

Christos Tsatsanis

Division of Laboratory Medicine School of Medicine, University of Crete, Heraklion, Crete, Greece

- Mechanisms of pathogen recognition: Cells and receptors
- Pathogen signals: TLR signaling
- Response to pathogens: Inflammatory cytokines and signaling
- T cell receptor signaling, the IL-2 paradigm
- Cytokine signaling and regulation

Exposure to pathogens and initiation of immune responses

Pathogen-Associated Molecular Patterns: PAMPs Pattern Recognition Receptors: PRRs

Pathogen recognition: Toll Like Receptors

Opsonization: efficient recognition

Opsonization

- Antigen is marked with opsonin
- nhances phagocytosis of an antigen
- Opsonins: Immunoglobulins(i.e. IgG),
 Complement (i.e. C3b), Fibronectin, fibrinogen,
 Acute phase proteins (i.e. CRP)

Allows phagocytosis through specialized receptors

TLR signaling cascades

- Pathogenic signals result in changes in immune cell functions, among which is expression of cytokines and chemokines.
- Cytokines and chemokines orchestrate
 Immune responses

Pathogenic cytokines

- TNF, IL-1, IL-6, RANKL
- IL-15, IL-18, IL-17, VEGF, IL-8, MCP-1
- IFNγ
 - increased inflammation: ↑ cytokine production, ↓ IL-10 production, migration arrest
 - decreased tissue destruction:
 \[\precept \text{ MMPs,} \]
 \[\precept \text{ osteoclastogenesis, suppression of IL-1 responses \]

Homeostatic cytokines

- IL-10: inhibits TNF, IL-1 and IL-6 production
- IL-1RA: antagonizes IL-1
- TGFβ: inhibits cytokine production; dual role on T cells (↓Th1, ↑Th17)
- corticosteroids: inhibit cytokine production
- type I IFNs (IFNα/β)
 - inhibit synoviocyte proliferation
 - promote cytokine and chemokine production
- IL-27
 - inhibits cytokine production and Th1 and Th17
 - promotes cytokine production and Th1

Cytokine signaling

- Cytokines signal via distinct receptors, some with common structures and downstream signaling effectors
- The cytokine milieu and the type of receptor expressed in the different cell types determines the phenotype/response

(d) TNF receptors

TNF-α
TNF-β
CD40
Nerve growth factor (NGF)
FAS

TNF receptor family transduce the signals following their trimerization

TNF receptors

- TNFR1 mainly initiates signals to promote apoptosis but also contributes to cell activation
- TNFR2 initiates activation signals and strongly activates NFkB without activating the apoptotic cascade

TNF signaling pathways

TNFR signaling

Class I and Class II cytokine receptors mediate signals via the Jak/STAT pathway

Class I cytokine receptors

IL-2 IL-13 IL-3 IL-15 IL-4 **GM-CSF** IL-5 G-CSF OSM IL-6 IL-7LIF CNTF IL-9 Growth hormone $\Pi_{-}11$ IL-12 Prolactin

IL-2 signaling controls T-cell activation

- Engagement of TCR results in induction of IL-2 secretion and IL-2R upregulation
- IL-2 induces T-cell proliferation
- T-cell activation requires TCR plus costimulatory signals

Memory and effector T cells

TCR-mediated T-cell activation

TCR signals are mediated by phosphorylation and de-phosphorylation events

 Engagement of TCR by a peptidepresenting MHC of an antigen-presenting cell (APC) activates the tyrosine kinase Lck, which in turn phosphorylates ZAP70 and the intracellular ITAM motifs of TCR.

A few seconds following TCR engagement Ca++ influxes and is also released from intracellular stores

Induction of IL-2 expression

- TCR signals induce activation of key transcription factors that bind to the promoter of IL-2 gene
- These include: NFkB, NFAT, AP1, Oct1 etc

Ca++ signaling in TCR activation

- A few seconds following TCR engagement Ca++ influxes and is also released from intracellular stores.
- Ca++ is an important signaling molecule activating calmodulin and the serine phophatase calcineurin, which in turn, dephosphorylates and activates the transcription factor NFAT.
- Dephosphorylated NFAT enters the nucleus and activates genes including this of IL-2

Therapeutic interventions

Cyclosporin and Tacrolimus (FK506) target NFAT activation

Nuclear translocation

Co-stimulation results in additive activation of downstream molecules: Positive co-stimulatory signals

Class II (Interferon family) receptors

IFN-α IFN-β IFN-γ IL-10

STATs are activated via tyrosine phosphorylation

STAT1 mediates the pro-inflammatory effect of IFN

STAT3 mediates the anti-inflammatory effects of IL-10

- Cytokine expression pattern and levels determine the fate of the inflammatory response
- Intracellular signaling molecules regulate cytokine action

Dependence of signal amplitude and kinetics on stimuli strength and consequences on biological outcomes

Signal integration determines the outcome in the complex inflammatory environment: The balance between cytokine action determines the severity of inflammation

Pathogenic and cytokine signal integration: the example of sepsis

Control of responses to pathogens: Positive and negative regulators triggered by hormones, cytokines, metabolites etc

Conclusions

- Pathogens are recognized through receptors and transmit signals in immune cells.
- Signal integration results in cytokine production and cell activation (i.e. phagocytosis).
- Cytokine and pathogen-receptor signaling is regulated in a dynamic manner during immune responses
 - It is augmented or suppressed
 - Cytokine signals crosstalk with signals from pathogen receptors, hormones, adipokines etc, and their balance determines the phenotype
 - Cytokines have different effects on the same cell depending on the timing and state of activation

Regulation of cytokine signaling and function will impact disease progression: new therapeutic approaches that modulate cytokine signaling

Receptors recognizing opsonized molecules

Chemokine signaling

(e) Chemokine receptors

IL-8

RANTES

MIP-1

PF4

MCAF

NAP-2

Inhibition by glucocorticoid receptors

Signaling mechanisms controlling macrophage

Inhibition of inflammatory signals by PPAR and glucocorticoids

miRNAs in TLR signaling as regulators of inflammatory responses

J. Cell. Physiol. 2009, 218: 467-472

MicroRNAs: novel players in the regulation of immunity protein

Endogenous, Yon protein coding, small RNAs

Exhibit tissue specific or developmental stage specific expression

Regulate translation and stability of mRNAs

Role

in hematopoiesis

In control of cell survival /proliferation

MIKINAS IN NEMATOPOIETIC CAlle

miRNAs control macrophage lineage cell differentiation by targeting transcription factors

Front. Physiol., 2012

51

Therapies targeting T-cell activation signals

PHASES OF AN INNATE IMMUNE RESPONSE

Jak and Stat interaction with different cytokine receptors

Cytokine receptor	JAK	STAT
IFN-γ	JAK1 and JAK2	Stat1
IFN-α/β	JAK1 and Tyk-2	Stat2
IL-2	JAK1 and JAK3	Stat5
IL-3	JAK2	Stat5
IL-4	JAK1 and JAK3	Stat6
IL-6	JAK1 (and sometimes others)	Stat3
IL-10	JAK1 and Tyk-2*	Stat3
IL-12	JAK2 and Tyk-2*	Stat4

TCR activation signals- overview

- Activation signals are mediated via several kinases including ZAP-70, PKC, Raf, MAPKs, JNK
- They lead to activation of transcription factors such as NFAT, NFkB, AP1
- They induce transcription of cytokines and other genes involved in activation or fate (i.e. that contribute to proliferation and/or Th1/Th2 polarization)
- Co-stimulatory signals use the same pathways

Recognition of pathogens: Fungi

