

Regulation of the expression and biologic activity of BAFF through the Interferon-a/ autophagy axis in Systemic Lupus Erythematosus

Nikoleri Dimitra

PhD candidate

Research Laboratory of Rheumatology Autoimmunity and Inflammation Medical School

Monocytes play a central role in SLE pathogenesis and behave as dendritic cells under the effect of type I IFN

DC-like phenotype of CD14+ Monocytes in lupus

A key feature of SLE (DC-like) monocytes is that they secrete high amounts of **BAFF**

contributing to maturation of B-cells to IgG-secreting plasmablasts

Strategies to block BAFF secretion have significant therapeutic potential in autoantibody-driven pathologies such as SLE

B cell activating factor - **BAFF**

monoclonal antibody BAFF
- Belimumab

~ 40% of SLE patients unresponsive to the drug

Belimumab targets successfully only the soluble trimeric BAFF (Vigolo et al.2018)

BAFF lacks the classical signal peptide and might follow 'unconventional' secretion pathways (ie, bypassing the ER-Golgi)

Unconventional protein Secretion-UPS:

→ leaderless cytosolic protein secreted from the cells via

«secretory autophagy»

→ process in which autophagy is involved in extracellular secretion of proteins and cytokines

(Cavalli et al.2020)

IL-1β as a prototype

(Lee et al.2018)

Autophagy is implicated in interferon-mediated monocyte hyperactivity in SLE

✓ In SLE monocytes autophagy is employed with:

Enhanced autophagosome formation
Unaffected autophagolysosomal fusion
Defective autolysosomal degradation
(lysosomes not properly acidified)

✓ Upon IFN α signaling in monocytes autophagy is employed with:

Enhanced autophagosome formation
Unaffected autophagolysosomal fusion
Defective autolysosomal degradation
(lysosomes not properly acidified)
Enhanced immunogenic potential

(Gkirtzimanaki et al.2018)

Hypothesis /Aim of the study

Molecular mechanism of BAFF production/secretion upon IFN α in autoimmunity remains unspecified

Investigation of the role of autophagy in IFN α -mediated regulation/secretion of bioactive BAFF thus

contributing to differentiation/activation of B lymphocytes in the context of SLE

Research questions

- 1. Is autophagy implicated in monocyte secretion of BAFF in the context of type I IFN signaling and lupus?
- 2. Does the IFN α /autophagy axis regulate the secretion of BAFF isoforms with differential bioactivity?
- 3. Could autophagy be exploited as a novel target to block BAFF secretion of lupus monocytes?

IFNα induces BAFF transcriptional, protein expression and secretion by monocytes

CD14+ monocytes (healthy donors) treated 18hrs stimulation with 200u/ml IFNα

BAFF follows 'unconventional' secretion?

- BAFF lacks a signal peptide
- Bioinformatics Analysis (OutCyte tool) → Good score for UPS
- \Box CD14+ monocytes (healthy donors) treated 24hr IFN α ,LPS with last 3hr Brefeldin treatment

☐ Brefeldin <u>failed to inhibit</u> BAFF secretion

→ first direct evidence that

BAFF might follow

non-conventional route of protein secretion

Autophagy affects IFN α - induced BAFF secretion?

 \Box CD14+ monocytes transfected with siATG5 and stimulated with IFN α for 24hr

Evidence of IFNa-induced BAFF secretion in an autophagy/ATG5-dependent manner

Need to examine:

- Evaluation of siATG5
- More replicates/use of THP1
- Examine TNFα secretion

Autophagy affects IFNα-induced BAFF secretion?

□ Pharmacological induction of autophagy with Rapamycin in CD14+ monocytes treated 18hrs with 200u/ml IFNα

Induction of autophagy with Rapamycin balances/enhances the IFNα-induced BAFF secretion

How autophagy affects IFNα-induced BAFF secretion?

Results

Whether LC3+ organelles containing BAFF are on pathway to degradation or facilitated IFNα-induced BAFF secretion?

 \Box **Inhibition** of autophagy with Bafilomycin (3hr pretr.) in CD14+ monocytes treated 18hrs with IFNα

BAFF secretion

Inhibition of autophagy flux reduces BAFF secretion

Results

Whether LC3+ organelles containing BAFF are on pathway to degradation or facilitated IFN α -induced BAFF secretion?

☐ Inhibition of autophagy with in CD14+ monocytes treated 18hrs with I IFN α +/- CQ

These data may imply that **BAFF** is not a degradative substrate for the autophagy-lysosomal pathway but that the secretion of BAFF depends on the autophagy-lysosomal pathway in IFNα-stimulated monocytes

BAFF is transcriptionally upregulated in active SLE CD14+ monocytes

BAFF and LC3 co-localize in CD14+ monocytes derived from active SLE patients

Conclusions:

-BAFF is overexpressed and appears to be colocalized with LC3 protein in monocytes from SLE active patients and healthy donors in presence of IFN α

- Autophagic pathway appears to be involved in IFN α -induced production and secretion of BAFF

The potential of our work is to unravel for the **first time** the **impact/role of autophagy** in the **regulation of BAFF production in the context of SLE**,

therefore creating the prospect for new therapeutic targets.

Pending/future work

Unconventional secretion

Results

Is IFNα- induced BAFF secretion regulated by MVB formation?

GW4869Inhibitor of one of the two ways of MVB formation

IFNα- induced BAFF and GORASP2 association?

GORASP2/GRASP55 and BAFF seem to have some interaction

- Unconventionally secreted proteins
- Conventionally secreted proteins

mRNA

Protein aggregates

Mitochondria and organellar material

Bacteria and viruses

- I-A. Unconventional secretion of cytosolic proteins with extracellular functions
- I-B. Removal of aggregate-forming proteins
- I-C. Extracellular release of cytoplasmic organellar material
- I-D. Microbial release from cells for transmission

Figure S10. A model of a vesicular trafficking pathway involved in unconventional secretion of CFTR. Under normal conditions, CFTR travels to the cell surface via a conventional Golgi-mediated route. Under ER stress or an ER-to-Golgi blockade, the core-glycosylated CFTR leaves the ER and is subsequently recruited to the autophagic vacuoles and MVBs. Although some CFTRs undergo degradation pathways, other CFTRs travel to recycling vesicles via MVB12B- and RAB8A-mediated mechanisms and eventually travel to the cell surface.