

Novel Cytokine Inhibitors

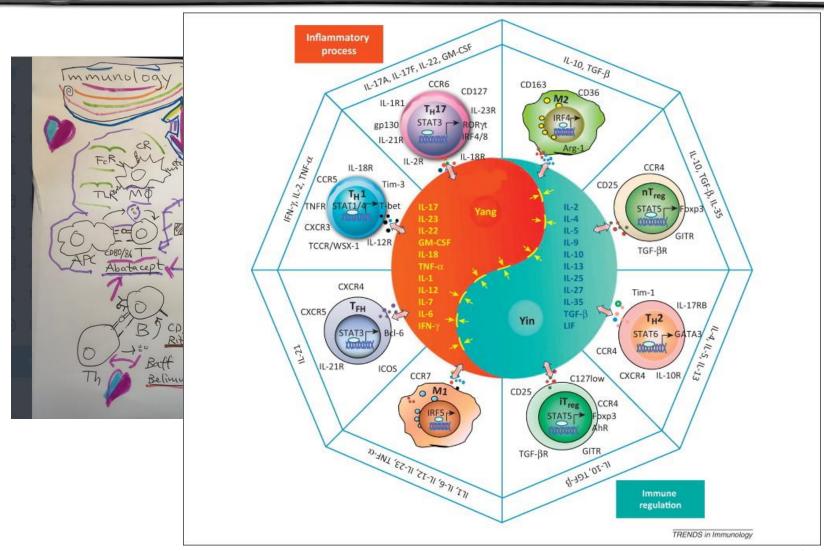
George E Fragoulis

Rheumatologist, "Laiko" Hospital

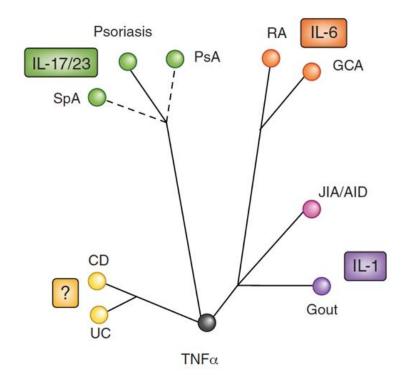
Honorary Research Fellow, Institute of Infection Immunity & Inflammation, University of Glasgow

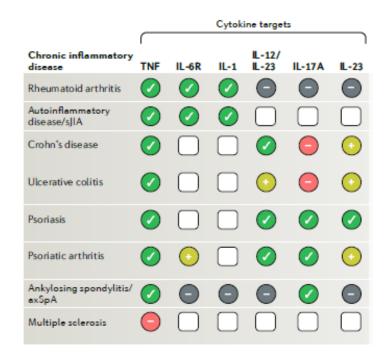
Introduction

Cytokines - properties

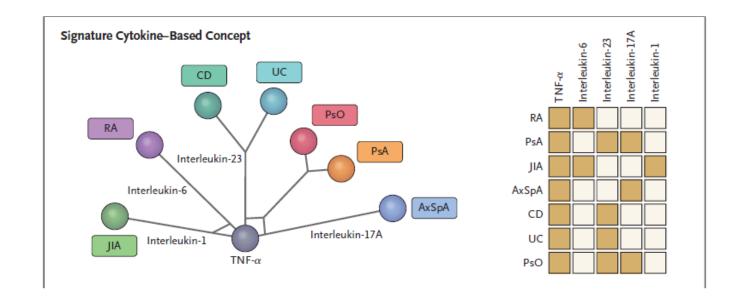

- Cytokines
 - are key effectors in the pathogenesis of several human ARDs
 - Single-cytokine targeting useful in several ARDs
 - ✓ e.g RA, PsA, GCA and others
 - mediate a wide variety of immunologic actions
 - Pleiotropic functions
 - Synergistic interactions
 - Render them intriguing therapeutic targets
 - But also could be associate with side-effects

Introduction

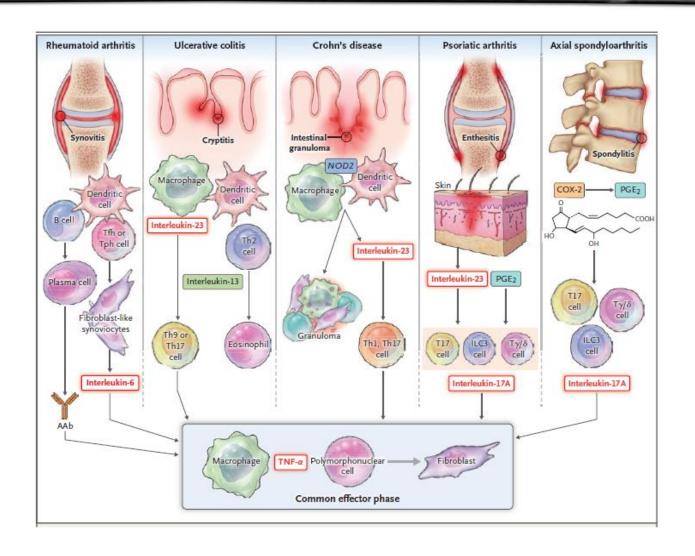

What do we need from cytokine-based treatment?

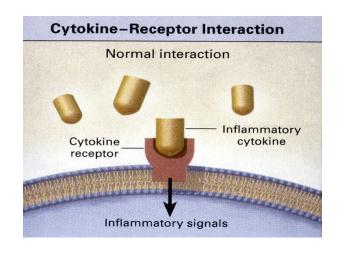

- Control of inflammation
- Protection of targeted tissues (e.g bone and cartilage)
- Promoting the re-establishment of immune tolerance
- Healing of previously damaged tissues
- Preservation of host immune capability
 - to avoid profound immune suppression

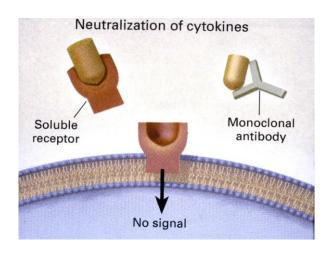
The complexity of Immune System

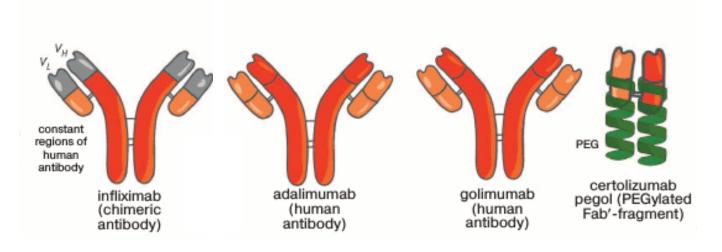


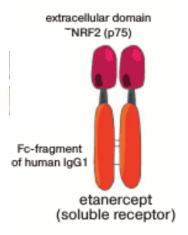
Different drivers according to disease type?



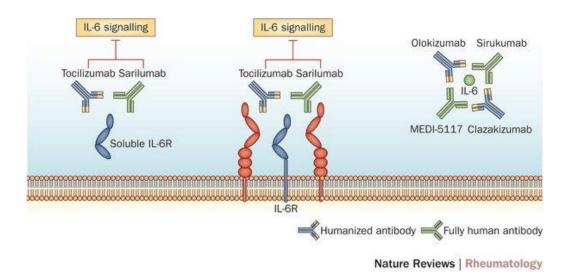

Different drivers according to disease type? (Updated?)

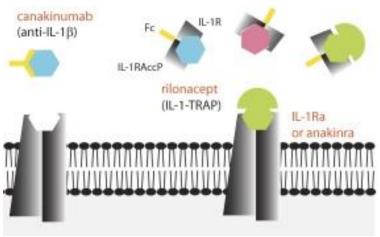



Same but different...

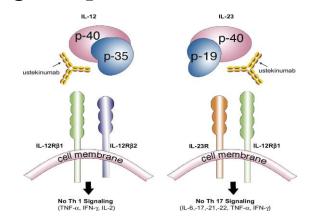


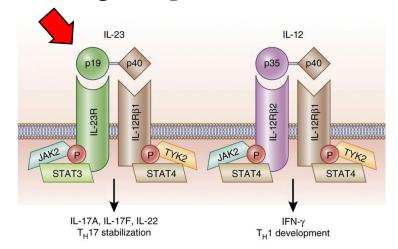
The Players The TNF inhibitors



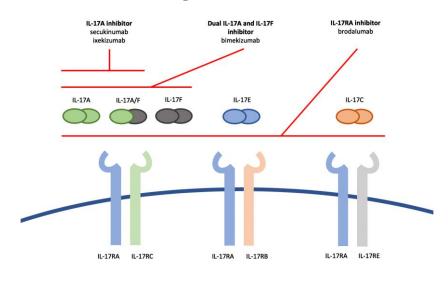


The Players Against IL-6 / IL-1

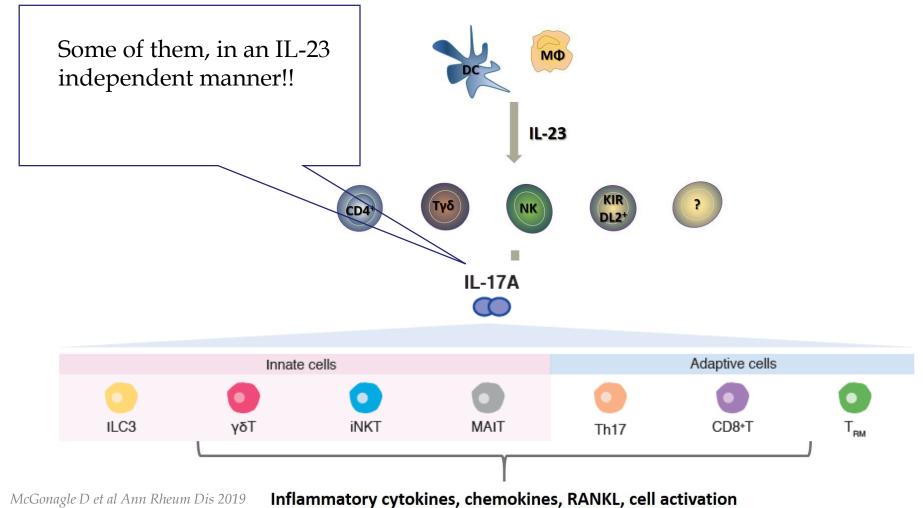



The Players

Against IL-23 / IL-17

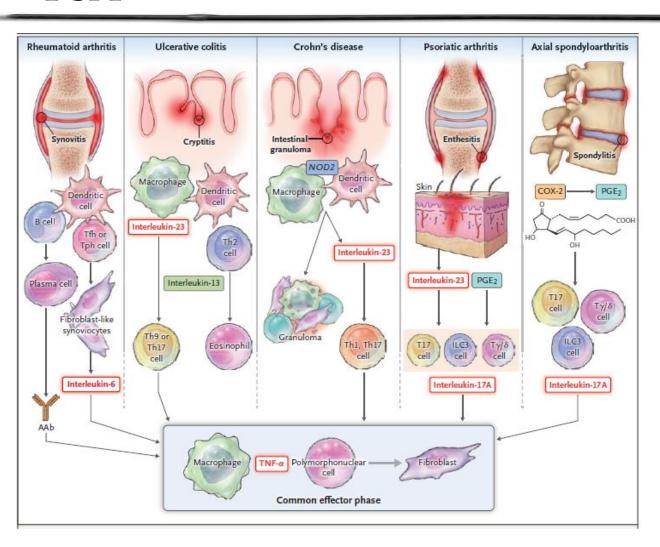

against p40 subunit IL-12/-23

against p19 subunit IL-23


against IL-17

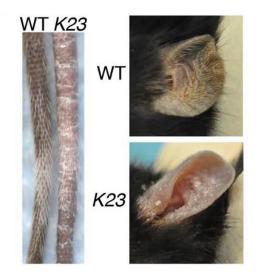
Risankizumab Guselkumab Tildrakizumab

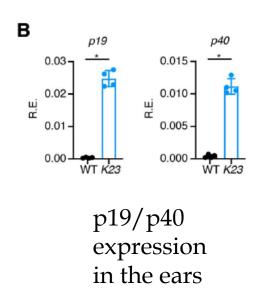
> Dinarello CA et al. Nat Rev Rheum 2019 Koutruba N et al Ther Clin Risk Management 2010 Reis J et al Biodrugs 2019 Teng MWL et al Nat Med 2015

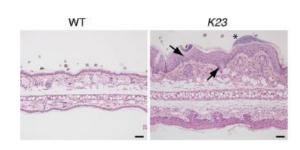

Anti-23/-12, Anti-IL-17 Why they work??

McGonagle D et al Ann Rheum Dis 2019 Inflammatory cyte Sieper J et al Nat Rev Rheum 2019 Siebert S, Fragoulis GE, McInnes IB EULAR online course 2016

IL-23

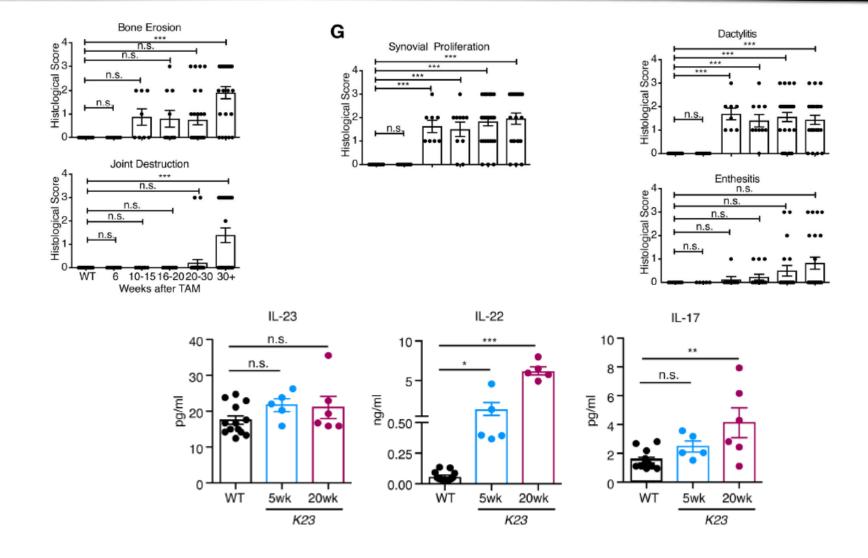

PsA




- → IL-23
 - Act more systemically
 - From distant sites (gut/skin)
 - Gut-joint axis
 - ✓ MAIT in PsA joints

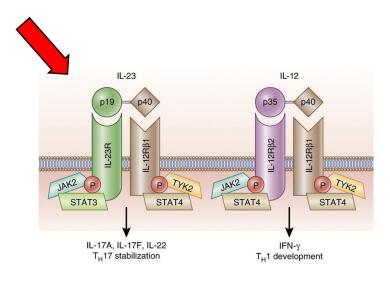
IL-23 mice model

→ Transgenic expression of IL-23 in skin of mice



H&E, ears 6 weeks

IL-23 mice model PsA features & cytokines expression

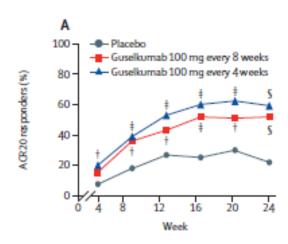

Anti-IL-23

Treatment modalities

Target	Generic name (trade name, where relevant)	Type of monoclonal antibody	Route, half life
p40 subunit of IL-23 and	Ustekinumab (Stelara®)	Human, IgG1	SC, 20 days
IL-12	Briakinumab (withdraw)	Human, IgG1	SC, 9 days
	Guselkumab (Trefmya®)	Human, IgG1λ	SC, 12-19 days
IL-23p19	Risankizumab (Skyrizi®)	Humanized, IgG1к	SC, 27days
	Tildrakizumab (Illumetri®, EU/ Illumya®, US)	Humanized, IgG1к	SC, 25 days

Anti-IL-23

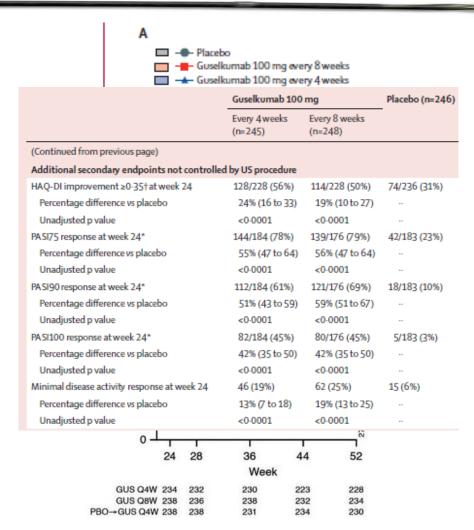
New Treatment modalities


Έναντι p19 υπομονάδας IL-23

Guselkumab Risankizumab Tildrakizumab

Guselkumab

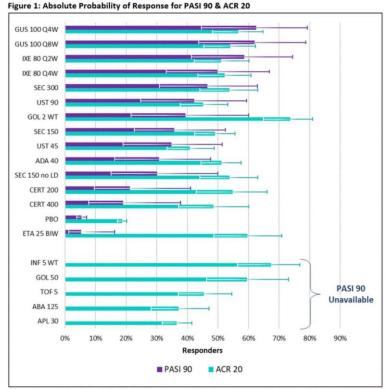
Discover-1 (PsA biologic-experienced)


- phase 3, placebo-controlled study
 - biologic-naive patients with active psoriatic arthritis
 - guselkumab100q4w/guselkumab100q8weeks/PBO
- ACR20 week 24
 - Gusq4w: 59%
 - Gusqq8w: 52%
 - ◆ PBO:22% p<0 ·0001
- No safety concerns

Guselkumab

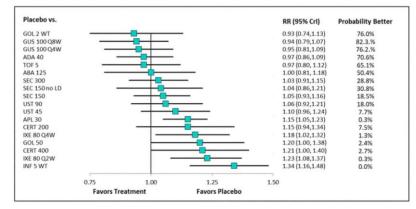
Discover-2 (PsA biologic-naïve)

- phase 3, placebo-controlled study
 - biologic-naive patients with active psoriatic arthritis
 - guselkumab100q4w/guselkumab100q8weeks/PBO
- ACR20 week 24
 - Gusq4w: 64%
 - Gusqq8w: 64%
 - PBO:33% p<0.0001
 </p>
- → Continued to improve over week 52
- → ACR20
 - Gusq4w 70.6
 - Gusq8w 74.6
- No safety concerns



Mease et al, Lancet 2020 McInnes IB, ARD 2020 (ab)

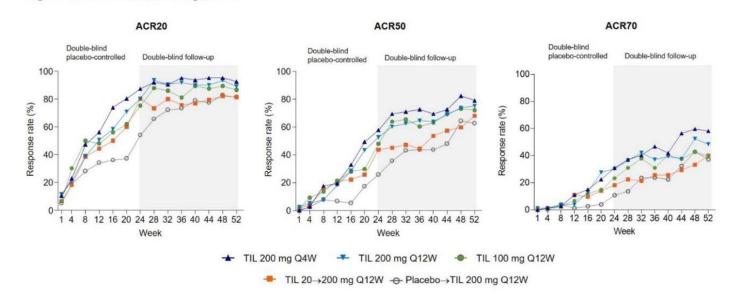
Guselkumab


SLR & network meta-analysis

- → SLR & network meta-analysis (RCTs 2000-2018)
- → 26 phase 3 studies: For ACR20 ranked 5th and 8th (q4w and q8w), For PASI90: 1st and 2nd

Median proportion of PASI 90 (purple) and ACR 20 (teal) responders with associated 95% credible intervals according to best-fitting NMAs.

Figure 2: Forest Plot of Adverse Events vs. Placebo

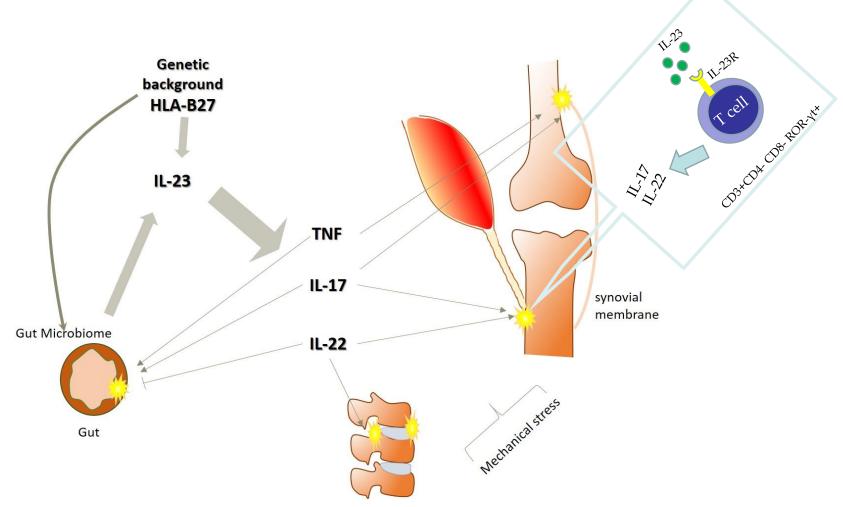


Forest plot comparing relative risks (RR) and 95% credible interval (<u>Crl</u>) versus placebo for adverse events. Probability better than placebo shown on the right.

Tildrakizumab

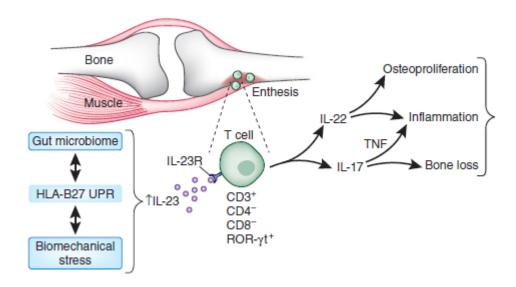
- → Phase 2 (n=391)
- → PsA pts were randomised 1:1:1:1:1 to 5 different schemes (one PBO)
- No new safety concerns

Figure 1. ACR20/50/70 through W52

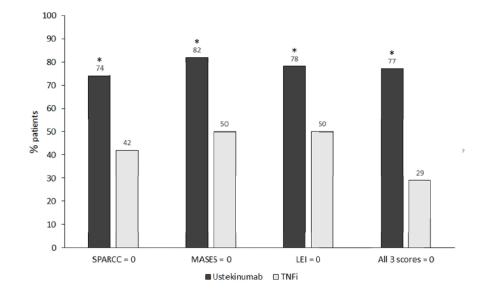

Risankizumab

- → Phase 2 (n=185)
- → PsA pts were randomized 1:1:1:1:1 to 5 different schemes (one PBO)
- No new safety concerns

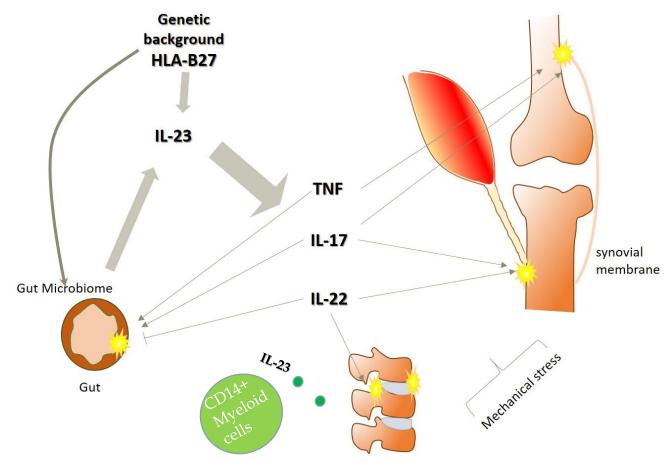
Acres acres	Risankizumab (RZB)					
Endpoints	Arm 1 N=42	Arm 2 N=42	Arm 3 N=39	Arm 4 N=20	Arms 1-4 N=143	Arm 5 N=42
ACR20 (%)	42.9	47.6	59.0**	40.0	48.3*	31.0
ACR50 (%)	19.0	16.7	33.3**	20.0	22.4**	7.1
ACR70 (%)	11.9	11.9	15.4*	15.0	13.3**	2.4
PASI 75 (%) ^b	68.8***	70.0***	69.6***	55.6*	67.6***	14.3
PASI 90 (%) ^b	60.0***	52.9**	47.6**	55.6**	53.2***	10.0
PASI 100 (%) ^b	46.7**	35.3**	28.6*	44.4*	37.1***	5.0
MDA (%)	19.0	28.6**	25.6*	30.0*	25.2***	7.1


Week 24

Psoriatic arthritis Pathogenesis

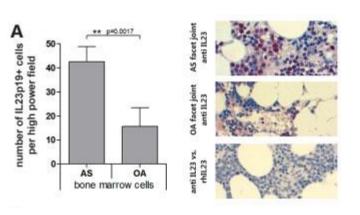

Psoriatic Arthritis Enthesitis

- → Enthesis organ "synovio-entheseal concept"
 - bursae, tendon sheaths, fibrous tissue, fat pads, fasciae
- Can everything start from the entheses ??



ECLIPSA Enthesitis

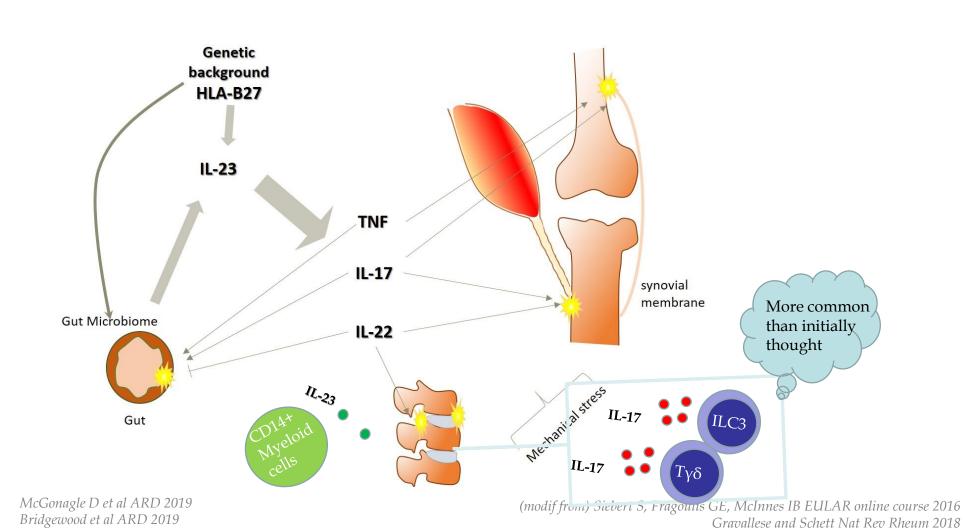
- Prospective randomized CT
- → Ustekinumab (n=23) >> TNFi (n=24)
- → At week 24
- more ustekinumab- than TNFtreated patients
 - SPARCC Enthesitis Index = 0
 (74% versus 42%, respectively; p
 = 0.018)
- → similar results observed for MASES =
 0, LEI = 0, and for all three scores = 0



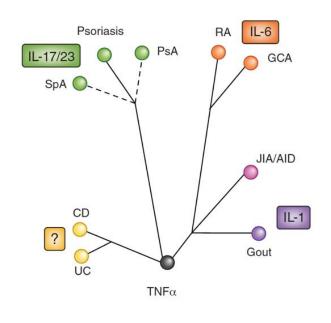
Psoriatic arthritis/SpA Pathogenesis

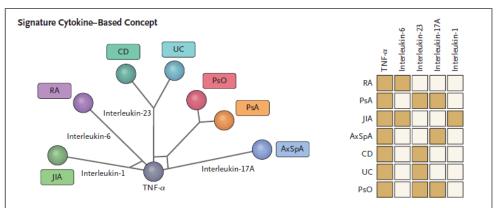
Axial spondylartritis IL-17 but not IL-23...

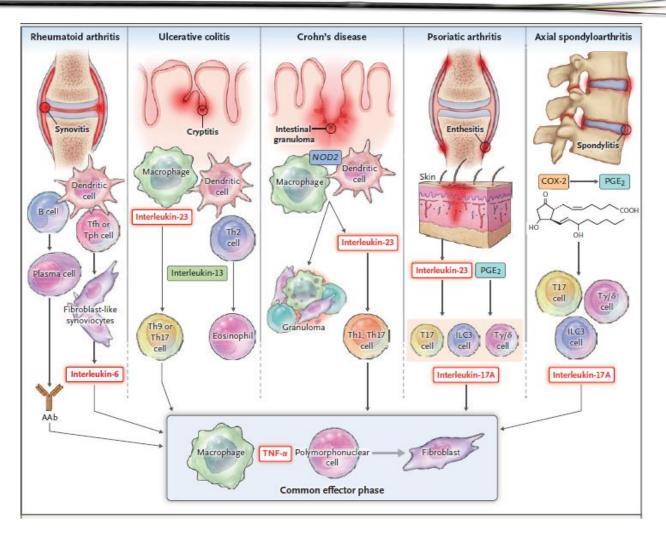
- → anti-IL-17 works but not anti-IL-23 ??
 - In peripheral blood of AS patients
 - 1 number of γδ T cells secreting
 IL-17 & expressing IL-23R
 - ♦ û IL-23 facet AS <u>but</u>


AxSpA

IL-23 does not work


- Ustekinumab
 - Despite some good results in small open label studies
 - phase III AS trials & non-radiographic axSpA
 - Primary endpoints were not achieved
- Risankizumab
 - Not good clinical and radiologic results in AS


PsA/SpA


Pathogenesis overview

Different drivers according to disease type? (Updated?)

Axial PsA Vs AS similarities & differences

TABLE 2 The comparison of the baseline and longitudinal clinical characteristics between the four groups

	Ankylosing spondylitis		Psoriatic arthritis			
Variable	Psoriasis (n = 91)	No psoriasis (n = 675)	Axial (n = 477)	Peripheral (N = 826)	P-value	
At baseline						
Active joints (tender + swollen), mean (s.p.)	1.3 (3.1)	1.1 (3.5)	8.5 (10.1)	9.2 (9.9)	<0.001	
Damaged joints, mean (s.p.)	0.7 (4.6)	0.2 (1.3)	5.5 (9.9)	1.8 (5.0)	<0.001	
Joints after surgery, mean (s.p.)	0.1 (0.6)	0.1 (0.5)	0.3 (1.6)	0.1 (0.6)	0.44	
Presence of inflammatory or mechanical back pain, n (%)	82 (90)	618 (92)	100 (21)	253 (31)	< 0.001	
ASDAS-ESR, mean (s.p.)	2.8 (1.3)	2.6 (1.1)	4.8 (3.0)	2.6 (1.1)	0.05	
Patient global assessment, mean (s.p.)	4.9 (3.0)	4.7 (2.8)	1.9 (1.7)	4.9 (2.5)	0.25	
BASMI, mean (s.p.)	3.1 (2.4)	2.3 (2.3)	1.9 (1.7)	1.2 (1.3)	< 0.001	
Enthesitis, n (%)	12 (13)	75 (11)	68 (14)	150 (18)	0.001	
Dactylitis, N (%)	0	0	146 (31)	213 (26)	0.08	
Iritis, n (%)	2 (3)	9 (2)	2 (0)	0 (0)	< 0.001	
Elevated ESR, n (%)	31 (34)	198 (29)	70 (15)	288 (35)	< 0.001	
Receiving biologics, n (%)	26 (29)	145 (21)	327 (69)	56 (7)	< 0.001	
Receiving NSAIDs, n (%)	47 (52)	340 (50)	216 (45)	435 (53)	0.04	
Receiving DMARDs, n (%)	12 (13)	84 (12)	5.2 (6.5)	232 (28)	< 0.001	
Over time, adjusted mean (s.p.)						
Total active joint	1.5 (3.5)	0.9 (2.2)	5.2 (6.5)	5.6 (6.6)	< 0.001	
BASMI	2.9 (2.2)	2.2 (2.1)	1.8 (1.4)	1.4 (1.2)	< 0.001	
ASDAS-ESR	2.3 (0.9)	2.2 (0.9)	2.2 (1.0)	2.1 (0.8)	0.58	
BASDAI	4.1 (2.0)	3.9 (2.1)	3.5 (2.2)	3.6 (2.0)	0.02	
Patient global assessment	4.3 (2.2)	4.1 (2.2)	2.1 (0.6)	3.9 (2.0)	0.34	
Physician global assessment	2.4 (0.9)	2.2 (0.8)	4.0 (2.3)	2.0 (0.7)	< 0.001	

Axial PsA Vs AS similarities & differences

	PsSpA	AS n (%)	AS versus P	AS versus PsSpA		
	n (%)		OR	95% CI	p Value	
Pattern						
Radiographic						
Sacroiliitis	79 (67)	157 (100)	-	-	-	
Spondylitis (cervical and/or lumbar)	84 (71)	109 (69)	0.94	0.52 to 1.69	0.83	
Sacroiliitis pattern						
Bilateral	65/79 (82)	142/147 (97)	6.14	2.08 to 18.15	0.001	
Symmetrical grade	60/79 (76)	119/147 (81)	1.17	0.59 to 2.32	0.65	
Spondylitis pattern						
Cervical vertebrae	52/116 (45)	85 (54)	1.20	0.65 to 2.25	0.56	
Cervical facet joint	29 (25)	60 (38)	1.48	0.81 to 2.72	0.20	
Lumbar vertebrae	50/117 (43)	85 (54)	1.37	0.75 to 2.50	0.30	
Morphology						
Sacroiliac joint						
Sclerosis bilaterally (grade 2)	6 (5)	9 (6)	1.75	0.56 to 5.48	0.34	
Erosion (grade 3)	42 (36)	53 (34)	1.07	0.63 to 1.81	0.80	
Partial ankylosis (grade 3)	25 (21)	46 (29)	1.08	0.56 to 2.10	0.81	
Complete ankylosis (grade 4)	18 (15)	68 (43)	2.96	1.42 to 6.15	0.004	
/ertebral						
Erosion, n (%)	3 (3)	6 (4)	1.58	0.38 to 6.57	0.53	
Non-bridging syndesmophyte	47 (40)	58 (37)	0.93	0.57 to 1.56	0.79	
Bridging syndesmophyte	12 (10)	36 (23)	2.78	1.49 to 5.18	0.001	

^{*}Multivariate reverse-stepwise logistic regression model (adjusted as required for the following potential covariates: sex, age at radiographic assessment, disease duration at radiographic assessment, HLA-B*27 status, anti-TNF use ever, synthetic DMARD use ever, smoking and BMI).

Anti-TNF, antitumour necrosis factor; AS, ankylosing spondylitis; BMI, body mass index; DMARD, disease modifying antirheumatic drug; PsSpA, psoriatic spondyloarthritis.

Axial PsA Vs AS similarities & differences

Table I. Baseline characteristics and treatment received. Comparison between axial-PsA and AS.

	axial-PsA (n=79)	AS (n=129)	p-value
Male gender, n (%)	36 (45.6)	78 (60.5)	0.04
Age (years), mean ± SD	52.1 ± 11.3	48.9 ± 13.4	0.05
Age at diagnosis, mean ± SD	45.7 ± 11.2	41.0 ± 15.7	0.002
Disease duration (months), mean ± SD	76.4 ± 64.1	97.5 ± 71.3	0.100
Weight (kg), mean ± SD	86.4 ± 19.6	77.5 ± 14.9	0.005
Height (cm), mean ± SD	172.1 ± 9.4	171.6 ± 10.2	0.753
Smoke (current), n (%)	33 (41.8)	62 (48.1)	0.393
BMI, mean ± SD	28.6 ± 5.9	26.2 ± 4.2	0.006
Family history of psoriasis, n (%)	32 (40.5)	6 (4.7)	0.001
Family history of SpA, n (%)	7 (8.9)	13 (10.1)	1.000
HLA-B27 status, n (%)	8/38 (21.1)	72/89 (80.1)	0.001
BASDAI, mean ± SD	3.37 ± 1.93	2.96 ± 1.95	0.212
ASDAS-CRP, mean ± SD	2.05 ± 0.77	2.08 ± 0.83	0.808
cDMARDs, n (%)	45 (56.9)	36 (27.9)	0.001
bDMARDs, n (%)	51 (64.5)	100 (77.5)	0.103
NSAIDs (ever), n (%)	44 (55.7)	105 (81.3)	0.001
Past use of bDMARDs, number, median (IQR)	0 (0-1)	0 (0-1)	0.856

Table II. Articular, extra-articular manifestations and radiologic findings: comparison between axial-PsA and AS.

	axial-PsA (n=79)) AS (n=129)	OR (95%CI)	p-value			
Articular and extra-articular manifestations							
Low back pain ¹	67 (85.9)	108 (75.5)	0.92 (0.42-1.99)	1.000			
Back pain (other regions)1	25 (32.1)	30 (21.0)	0.65 (0.35-1.22)	0.198			
Anterior chest wall pain1	6 (7.7)	11 (7.7)	1.00 (0.35-2.81)	1.000			
Peripheral arthritis ²	72 (91.1)	55 (42.6)	0.07 (0.03-0.17)	0.001			
Mono/oligo-arthritis	26 (32.9)	46 (35.7)	1.13 (0.62-2.04)	0.764			
Polyarthritis	46 (58.2)	9 (7.0)	0.05 (0.02-0.12)	0.001			
Current/past psoriasis, n (%)	79 (100.0)	17 (13.2)	5.64 (3.67-8.69)	0.001			
Dactylitis1	16 (20.2)	7 (5.4)	0.22 (0.08-0.58)	0.001			
Nail involvement1	30 (37.9)	0 (0.0)	0.01 (0.01-0.09)	0.001			
Enthesitis1	18 (22.8)	21 (16.3)	0.65 (0.32-1.33)	0.274			
Eye involvement1	2 (2.5)	30 (23.2)	11.66 (2.70-50.37)	0.001			
Bowel involvement ¹	3 (3.8)	22 (17.1)	5.21 (1.51-18.08)	0.004			
	Radiolo	gic findings					
Sacroiliitis on x-ray/MR							
Abnormal^	41/62 (62.1)	114/114 (100.0)	3.78 (2.91-4.91)	0.001			
Unilateral	29/62 (46.7)	19/114 (16.7)	0.23 (0.11-0.45)	0.001			
Bilateral	12/62 (19.3)	95/114 (83.3)	19.58 (8.77-43.70)	0.001			
Cervical spine x-ray/MRI							
Abnormal^	20/27 (74.1)	40/56 (71.4)	0.87 (0.31-2.47)	1.000			
Thoracic spine x-ray/MRI							
Abnormal^	9/17 (52.9)	26/39 (66.7)	1.78 (0.56-5.68)	0.378			
Lumbar spine x-ray/MRI							
Abnormal^	14/27 (51.8)	51/72 (70.8)	2.25 (0.90-5.60)	0.098			

Ustekinumab in Axial PsA Data from Psummit-1 & 2

- → Pooled data from PSUMMIT 1 & 2
- → Week 24
 - UST Vs PBO
 - neck/back/hip pain (−1.99 vs −0.18)
 - mBASDAI (-2.09 vs -0.59).
 - ♠ ① % of UST Vs PBO achieved ASDAS clinically important improvement
 - ✓ decrease ≥ 1.1 ; 49.6% vs 12.7%; nominal p<0.05

Guselkumab in Axial PsA Data from Discover-1 & 2

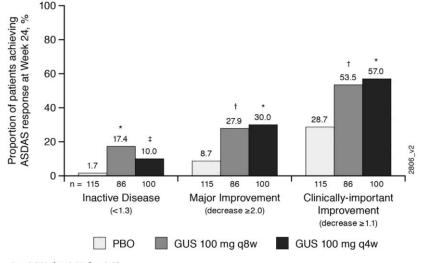
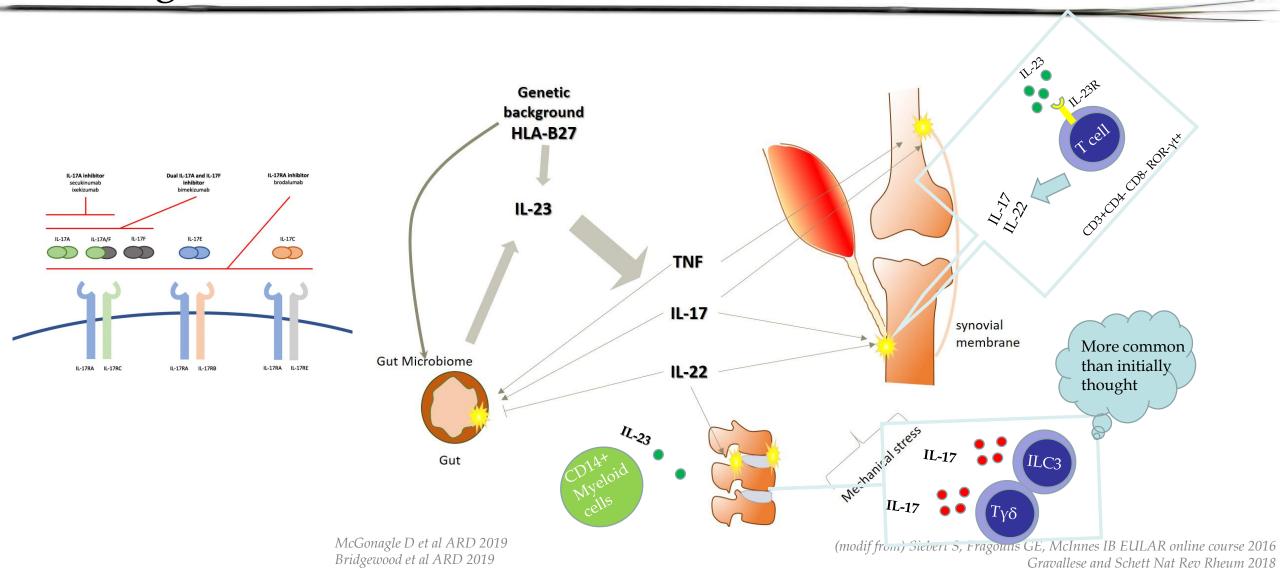

→ 312 pts with axial PsA (imaging confirmed SI)

Table. Efficacy of GUS in PsA patients with axial involvement at week 24.8

	PBO (n=118)	GUS 100 mg every 8 weeks (n=91)	GUS100 mg every 4 weeks (n=103)
LS Mean change in BASDAI	-1.35	-2.67*	-2.68*
LS Mean change in spinal pain ^b	-1.30	-2.73*	-2.48*
BASDAI50°, %	21/110 (19.1%)	34/84 (40.5%)**	36/95 (37.9%)**
LS Mean change in modified BASDAI ^d	-1.13	-2.16*	-2.18*
LS Mean change in ASDAS-CRP	-0.71	-1.43*	-1.46*

Pts with axial involvement consistent with sacroillitis at baseline and either a history of imaging confirmation or pelvic X-ray at screening (pooled data from DISCOVER-1 & 2)

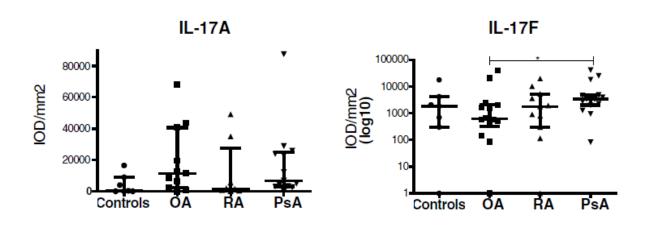
Unadjusted p-values as noted: *p < 0.001, ** p < 0.01


^bQuestion 2 of the BASDAI.

[°]Pts with BASDAI > 0 at baseline.

dExcludes question 3 of the BASDAI.

PsA/SpA


Pathogenesis overview

IL-17

blocking both IL-17A and F

- → IL-17 family
 - ♦ IL-17F is the most structurally homologous (~50%) to IL-17A
 - IL-17F seems to be significantly increased in the synovium of PsA compared to osteoarthritis (OA) patients, unlike IL-17A
 - IL-17F seems to be the predominant subtype produced by Tγδ cells
 - capable of producing both IL-17 even independently of IL-23 stimulation
 - Special role in enthesis/axial disease

IL-17

blocking both IL-17A and F

→ Bimekizumab is a humanized monoclonal IgG1 antibody that selectively neutralizes both IL-17A and IL-17F.

→ Registered: psoriasis

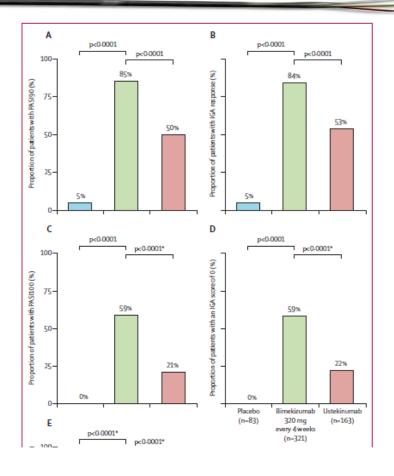
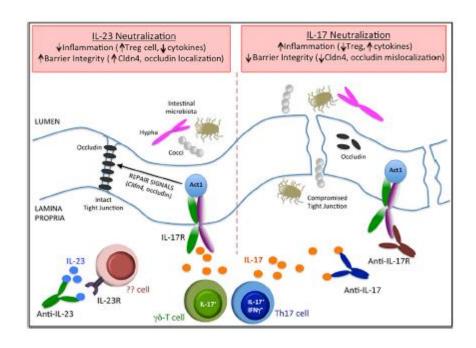

→ Phase III: AS, PsA

Table I Results from Published Trials Involving Bimekizumab in Psoriatic Arthritis

	Registration	ACR20	ACR50	PASI75	PASI100	PGA	PtGA
Phase I PA0007 ⁷	NCT02141763	Bimekizumab arm (at week 8)					
		80%	40%	100%	87%	-64%	- 59%
		Placebo arm					
		16.7%	8.3%	0%	0%	-29%	-17%
Phase II BE ACTIVE ⁸	NCT02969525						
		59.75%*	34.5%**	64.75%****	35.25%****		
		Placebo arm					
		19%	7%	7%	7%		


Bimekizumab better than IL-23 for skin?

- → H2H comparison with Ustekinumab
 - ♦ 567 patients
 - 321 randomized to bimekizumab
 - 163 to ustekinumab
 - 83 to a placebo
 - bimekizumab > ustekinumab (week 16)
 - * 85% vs 49.7% PASI 90 responses, p<0.001
 - Sustained till week 52 (81.6% vs 55.8%, p<0.001).

Anti-IL-17 Safety

- → Anti-IL-17 & Inflammatory bowel disease
 - RCTs in Crohn disease: negative
 - Pathogenetic mechanisms
 - Candida growth (IL-17 fungal protection)
 - Occludin traslocation (tight junction protein)
 - ✓ Production of IL-17 from Tγδ upon intestinal injury
 - New cases ??

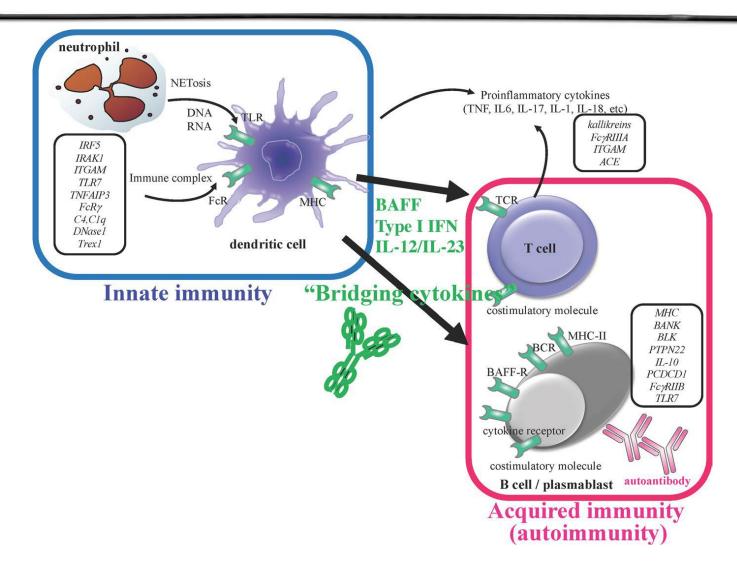
Doedhar et al Arthritis Rheumatol. 2016; 68 (suppl 10)
Fobelo Lozano MI J Crohns Colitis 2018
Heuber W et al Gut 2012
Gaffen SL et al Nat Rev Immun 2012
Colombeel JF et al 2013
Whibley N et al Immunity 2015

Treatment

IL-17 & gastrointestinal manifestations

- → 7355 patients (16.227 PY) 21 clinical trials
 - Patients exposed to anti-IL-17
- → Pso: 5181 (14)
- PsA: 1380 (3)
- → AS: 794 (4)
- Incidence did not increase over-time
- Most were new-onset

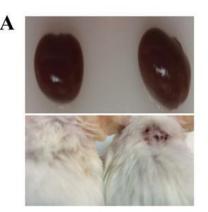
Table 2 EAIRs (95% CI) of IBD over the entire treatment period for patients taking any dose of secukinumab							
	PsO Studies N=5181	PsA Studies N=1380	AS Studies N=794				
Median exposure (min–max), days	505.0 (1–1825)	1067.5 (8–1827)	981.5 (1–1530)				
Total exposure, PY	10 416.9	3866.9	1943.1				
Incidence, identified by standard definition (preferred term)							
CD, EAIR per 100 PY (95% CI)	0.05 (0.02 to 0.11)	0.08 (0.02 to 0.23)	0.4 (0.2 to 0.8)				
UC, EAIR per 100 PY (95% CI)	0.13 (0.07 to 0.23)	0.08 (0.02 to 0.23)	0.2 (0.1 to 0.5)				
IBDU, EAIR per 100 PY (95% CI)	0.01 (0.00 to 0.05)	0.05 (0.01 to 0.19)	0.1 (0.0 to 0.3)				

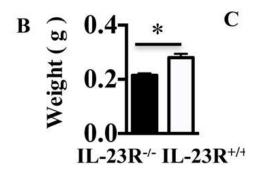

Treatment

IL-17 & gastrointestinal manifestations

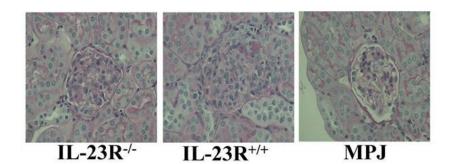
- → 106 randomized trials: 40.053 patients
 - ♦ Inflammatory bowel disease cases were reported in 0.4% of patients exposed to IL-17i
- → 61 uncontrolled or retrospective studies: 16.791 patients
 - Sixty (0.36%) inflammatory bowel disease cases were reported
- Most of them new onset

New onset IBD or exacerbation of an old one seems to be uncommon


IL-23-17 axis in other diseases SLE

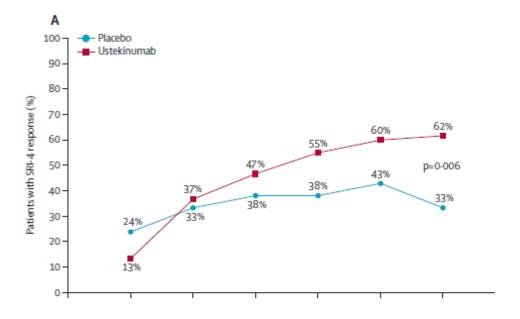


IL-23

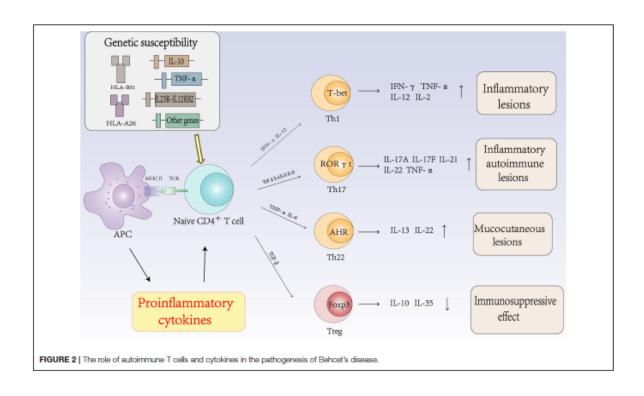

SLE

- → 1 IL-12, and IL-23 concentrations
- → IL-23 û in SLE with active disease Vs patients with inactive disease and healthy controls
- → IL-23R+/+ MRL.lpr mice Vs IL-23R-/- MRL.lpr mice
 - enlarged kidneys and severe skin lesions,
 - significantly worse glomerulonephritis as compared to IL-23R-/- MRL.lpr mice
 - ♦ Û dsDNA

IL-23R-/- IL-23R+/+

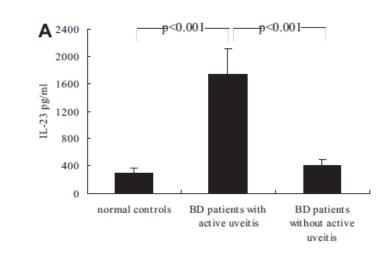


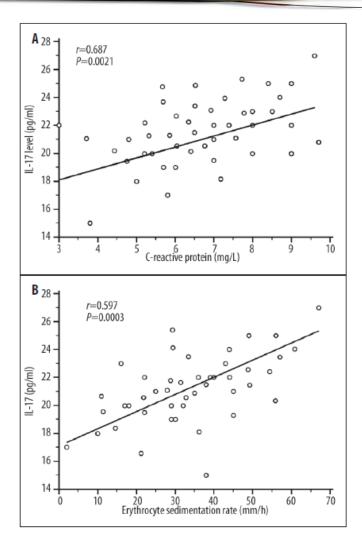
Ustekinumab in SLE Phase II trial


- Multicentre, double-blind, phase 2, RCT
 - adult patients with active SLE randomly assigned (3:2) to the ustekinumab or placebo group
- ▶ IV ustekinumab followed by SC ustekinumab 90 mg q8weeks or intravenous placebo at week 0 followed by subcutaneous injections of placebo every 8 weeks
 - both in addition to standard-of-care therapy
- Primary endpoint @week24
 - % of patients achieving a SLEDAI-2K responder index-4 (SRI-4)

Ustekinumab in SLE Phase II trial

- 102 patient
 - ♦ ustekinumab (n=60) or placebo (n=42).
- At week 24
 - 62% of patients in the ustekinumab group
 - 33% in the placebo group
 - achieved an SRI-4 response (percentage difference 28% [95% CI 10–47], p=0.006).
- → Phase III.....terminated! Due to poor efficacy

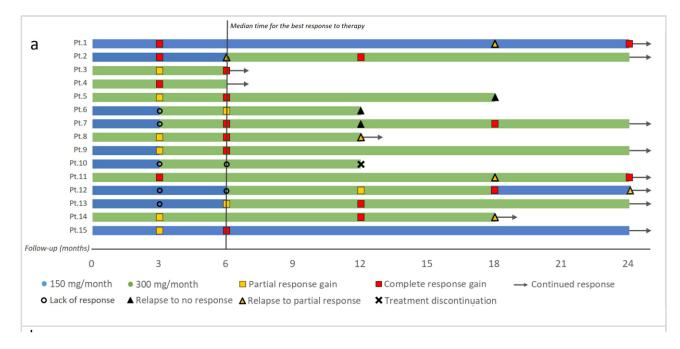



IL-23-17 axis in other diseases Behcet's disease (BD)

IL-23-17 axis BD

- → rs17375018 in the IL-23R gene had a strong correlation with BD uveitis
- → IL-17, IL-23
 - Increased in serum
- frequencies of Th17 cells and their cytokines and transcription factor RORgt
 - ♦ û in active BD patients than those in inactive BD patients

Anti-IL-17

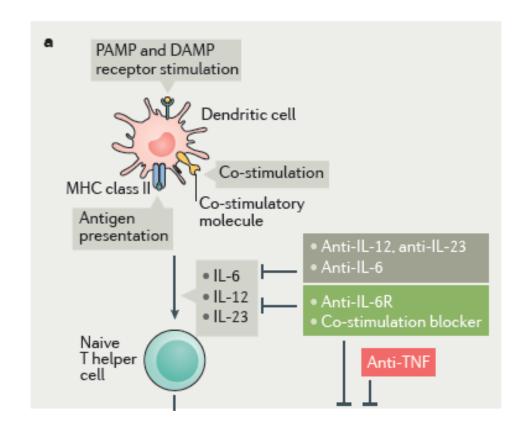

BD

Multicentre retrospective study

- 15 patients with a mucosal and articular BD phenotype
- refractory to colchicine, disease-modifying antirheumatic drugs and at least one TNFi
- Secukinumab from 150 to 300 mg per month
 - As add-on therapy
 - No TNFi

3 months of follow-up

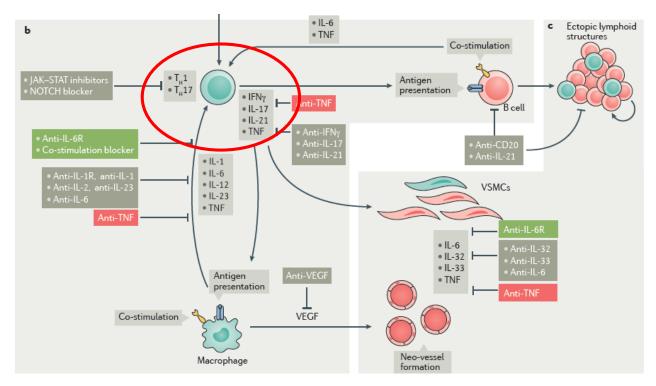
- 66.7% patients achieved a response (complete or partial)
- further increased to 86.7% at 6 months, 76.9% at 12 months, 90.0% at 18 months and 100.0% after 24 months


Anti-IL-23

BD

- open-label study included 30 patients
- Oral ulcers refractory to colchicine
- → Ustekinumab week 0,4 and q12w
- primary end point: at week 12: % complete response (no ulcers)
- Results
 - ▶ The median No of oral was significantly □ at week 12 compared to baseline (0 [IQR 0–1] versus 2 [IQR 2–3]; P < 0.0001)
 - Complete response was achieved in 60.0% and 88.9% of patients at weeks 12 and 24, respectively

IL-23-17 axis in other diseases GCA


- Adventitia
 - important site of immune surveillance
 - rich in dendritic cells (DCs) and MΦ
 - expressing Toll-like receptors (TLRs)
- pathogen-associated molecular patterns (PAMPs), microorganism-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs)
 - DC activation
 - leading to the production of proinflammatory cytokines such as IL-12 and IL-6, IL-23, IL-1
 - Naïve T cells activation

IL-6 amplifying inflammation & chronic phase

- Maturation of DCs
- → naive CD4+ T cells polarize
 - ♦ Th1 cells
 - Production IFNγ and TNF
 - ♦ Th17 cells
 - Production IL-17 and IL-21

- Recruit macrophages
 - produce IL-1, IL-6, IL-12, IL-23, TNF and VEGF
 - Might drive GC formation and VSMC proliferation

Treatment / anti-TNF failed

- → No clear explanation why TNFs failed
 - Possibly redundant pathways exist

Infliximab (TNF blocker)	Randomized, multicentre, double-blinded	44	New GCA (cranial)	54 weeks	Did not achieve primary and main secondary end points	Hoffman 2007 (REF. 134) (full paper)
Etanercept (TNF blocker)	Randomized, multicentre, double-blinded	17	GCA in remission, stable oral prednisone treatment	15 months	Cumulative glucocorticoid dose: 1.5 g in etanercept versus 3.0 g in control group (p=0.03) other outcomes negative	Martinez-Taboada 2008 (REF. 137) (full paper)
Adalimumab (TNF blocker)	Randomized, multicentre, double-blinded	70	New GCA (cranial)	52 weeks	Did not achieve primary and main secondary endpoints	Seror 2014 (REF. 136) (full paper)

Treatment - what about Ustekinumab?

- → The "dual" role (IL-12 & IL-23) makes UST a potentially attractive treatment
- → Open-label/small (n=25) study, 52 weeks
- refractory disease with either an inability to taper prednisolone to an acceptable dose or a history of multiple relapses during prednisolone
 - a reduction in
 - median prednisolone dose (p < 0.001)
 - CRP (p = 0.006)
 - No patients had a flare of GCA while treated with ustekinumab

Treatment - what about Ustekinumab?

- Open-label trial of UST in GCA
- → All patients: a 24-week prednisone taper and SC UST 90 mg at baseline and at weeks 4, 12, 20, 28, 36, and 44.
- → Primary endpoint: prednisone-free remission (absence of relapse through week 52 and normalization of the ESR and CRP level)
- → 13 patients
 - Only 3 (23%) achieved the primary endpoint.
 - ♦ Of the 10 patients (77%) who failed to achieve the primary endpoint, 7 relapsed after a mean period of 23 weeks.
- → **Conclusion:** UST combined with 24 weeks of prednisone was associated with a high rate of treatment failure in this prospective GCA trial.

Secukinumab

→ Only case reports so far....

> Trials. 2021 Aug 17;22(1):543. doi: 10.1186/s13063-021-05520-1.

Efficacy and safety of secukinumab in patients with giant cell arteritis: study protocol for a randomized, parallel group, double-blind, placebo-controlled phase II trial

Nils Venhoff ¹, Wolfgang A Schmidt ², Peter Lamprecht ³, Hans-Peter Tony ⁴, Christine App ⁵, Christian Sieder ⁵, Carolin Legeler ⁶, Claudia Jentzsch ⁷, Jens Thiel ¹

Take home Messages

- → Are we going towards cytokine-based treatment?
 - Simple but complex
- → Could that be that some cytokines are involved at an earlier stage of disease than others?
- Other (partly unidentified) cells are contributing to the cytokine milieu.