

8-10 ΟΚΤΩΒΡΙΟΥ 2021 ΗΡΑΚΛΕΙΟ ΚΡΗΤΗ

Genetics, Epigenetics in Inflammation/Cancer Omics

www.clinicalimmunology-crete-2021.gr

Άγγελος Μπανός

Μεταδιδακτορικός Ερευνητής, IIBEAA & Ειδικευόμενος Παθολογίας, Β΄ Παθολογική Κλινική, Ιατρική Σχολή ΕΚΠΑ, ΓΝΑ «Ιπποκράτειο»

Omics – Anarchy in Biology

-Omics: Large scale dataset in specific species of biomolecules or biological entities (wholistic approach)

Gene regulatory networks in Hepatocellular Carcinoma

- Serial layers of –omics
- Elucidation of mechanisms
- Pathophysiological maps
- Casuality
- Therapeutical targets
- Personalized medicine

NGS technology

NGS technology

Exome sequencing

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Genome Sequencing as an Alternative to Cytogenetic Analysis in Myeloid Cancers

Question: Replacement for conventional cytogenetic and sequencing approaches in the diagnosis of MDS and AML

B Diagnostic Yield in 68 Consecutive Patients with AML

Duncavage et al, N Engl J Med 2021; 384:924-935

RNA-sequencing

Transcriptome based patient classification in SLE

Mapping systemic lupus erythematosus heterogeneity at the single-cell level

Question: Examine cellular heterogeneity and originin blood of SLE patients

Results: High ISG expression signature derived from a small number of transcriptionally defined subpopulations, including monocytes, CD4⁺ and CD8⁺ T cells, NKs, pDCs, B and plasma cells.

Classification and correlation with disease activity

Transcriptome based patient classification in SLE

Nenar-Belaid, D., et al. Nat Immunol 21, 1094-1106 (2020).

Methylome Profiling

Genome wide analysis of methylome impact on RA pathogenesis and heritability

TRANSLATIONAL SCIENCE

Genetic variants shape rheumatoid arthritis-specific transcriptomic features in CD4⁺ T cells through differential DNA methylation, explaining a substantial proportion of heritability

			Methylome (n=122)	Transcripotme (n=103)	Genome (n=104)
Sample size (n)	Cases Controls		Methylation 450K BeadChip (n=122) or MBD-Seq (n=68)	HumanHT-12 v4 BeadChip	Genome-wide SNP array (KoreanChip)
	64	26	✓	✓	✓
	9	4	✓	✓	
	7	7	1		✓
San	2	3	1		

Question: Map transcriptome of blood CD4⁺ cells in RA patients, integrate genome/epigenome

Results: Differentially methylated regions coincide with RA variants explaining part of heritability

Genome wide analysis of methylome impact on RA pathogenesis and heritability

Genome wide analysis of methylome impact on RA pathogenesis and heritability

Chromatin Mapping

Chromatin Accesibility

Chromatin Accesibility

Nuclear Structure - HiC

https://doi.org/10.1038/s41467-020-20849-y

OPEN

Dynamics of genome architecture and chromatin function during human B cell differentiation and neoplastic transformation

Redls (NBC)

Germinal center
B cells (GCBC)

Plasma

Memory

B cells (MBC)

cells (PC)

	NBC	GCBC	PC .	мвс
Sorting scheme	CD19 ⁺ IgD ⁺ CD27 ⁻	CD19 ⁺ CD20 ⁺⁺ CD38 ⁺	CD19 ⁺ CD20 ⁺ CD38 ⁺⁺	CD19 ⁺ IgA ⁺ /IgG ⁺ /IgM ⁺ /IgD ⁺ CD27 ⁺
Source	Peripheral blood	Tonsil	Tonsil	Peripheral blood
Biological replicates	3	3	3	3

Question: Study genome rearrangements during B-cell differentiation in steady-state and disease

Results: Leukemia-derived B-cells possess a tumor like genome organization

Vilarrasa-Blasi, R., et al. Nat Commun 12, 651 (2021).

JCI insight

Integrated urine proteomics and renal single-cell genomics identify an IFN-γ response gradient in lupus nephritis

Question: Capture of inflammatory response is absent in histopathological morphology

Results: Stratification of chemokine gradient inducible of IFN-y

Chemokines produced by kidney infiltrating CD8+ cells

Fava a. et al, JCI Insight. 2020;5(12):e138345

Microbiomics of IBDs Host/Microbial interaction map

Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases

Question: Explore dysbiosis of microbiome in IBD patients

Results: Shifts in temporal variability, taxonomy, functions and biochemistry of phyla during marked disease activity

Map of the crosstalk with the host

Microbiomics of IBDs Host/Microbial interaction map

Lloyd-Price, J et al. Nature **569**, 655–662 (2019)

ΣΧΟΛΕΙΟ ΒΑΣΙΚΗΣ ΑΝΟΣΟΛΟΓΙΑΣ ΓΙΑ ΚΛΙΝΙΚΟΥΣ

www.clinicalimmunology-crete-2021.gr

8-10 ΟΚΤΩΒΡΙΟΥ 2021 ΗΡΑΚΛΕΙΟ ΚΡΗΤΗ

"There's your problem...
You've got an extra parenthesis in line 18."

Thank you!

